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Preface

The aim of this thesis is to study discrete structures associated with group-based models.

Group-based models are statistical models on phylogenetic trees that can be parametrized

by polynomial maps. The algebraic varieties given by these polynomial maps are toric.

By the well-known correspondence between toric varieties and polyhedral fans, we can

associate discrete structures, such as lattice polytopes and affine semigroups, with group-

based models.

We follow three main lines in this dissertation. In Chapters 2 and 3, we study the

Hilbert polynomials of group-based models. This is motivated by a result of Buczyńska

and Wísniewski stating that the Hilbert polynomial of the Jukes-Cantor binary model on

a trivalent tree does not depend on the shape of the tree [BW07]. In Chapter 2, we give a

simple combinatorial proof to this statement, and in Chapter 3, we show that the analogous

statement does not hold for the Kimura 3-parameter model.

In Chapters 4 and 5, we study the phylogenetic semigroups on graphs that generalize the

Jukes-Cantor binary model on trees [Buc12, BBKM11]. In Chapter 4, we study the maximal

degrees of the minimal generators of these semigroups. In Chapter 5, we investigate the

minimal generators of the phylogenetic semigroups on graphs with a few holes, extending

the work of Buczyńska [Buc12].

Finally, in Chapter 6, we establish a connection between Berenstein-Zelevinsky triangles

from representation theory and group-based models. This is motivated by the recent work

of Sturmfels, Xu, and Manon related to conformal block algebras [SX10, Man09, Man12a].
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Introduction

Algebraic statistics uses algebro-geometric and combinatorial methods to study problems

in statistics. As a side effect, algebraic statistics leads to advances in algebraic geometry

and combinatorics. One of the first articles in algebraic statistics was [DS98] by Diaconis

and Sturmfels in 1998. Since then the development of the field has been rapid and several

books have been written [PRW01, PS05, DSS09, Wat09].

Phylogenetic algebraic geometry is part of algebraic statistics that explores phylogenetic

statistical models on trees. Phylogenetics is the study of evolution of species based on

genetic information, see [Fel04, SS05a]. Phylogenetic models on trees can be parametrized

by polynomial maps. Hence, there are algebraic varieties associated with them, which are

main objects of study in phylogenetic algebraic geometry.

Group-based models are special phylogenetic models that are invariant under the action

of an abelian group. They are especially interesting to combinatorialists, because algebraic

varieties associated with them are toric varieties [ES93, SSE93]. There is a well-known

correspondence between toric varieties and discrete structures, such as affine semigroups

and lattice polytopes. The central theme of this dissertation is the study of these discrete

structures associated with group-based models.

The starting points of this dissertation are two results by Buczyńska and Wísniewski

in [BW07]. The first result of Buczyńska and Wísniewski characterizes the Hilbert poly-

nomial of the algebraic variety associated with the Jukes-Cantor binary model on a tree.

Specifically, they showed that this polynomial depends only on the number of leaves of

the trivalent tree and not on its topological structure. Their proof relies on deformation

theory. In joint work with Haase and Paffenholz, we give a simple combinatorial proof of

this statement in Chapter 2:

Main Result 1. There is a combinatorial proof using piecewise affine unimodular maps

that the Hilbert polynomial of the Jukes-Cantor binary model does not depend on the shape

of the tree.

In Chapter 3, we show that analogous statement is not true for the Kimura 3-parameter

model, which is the group-based model with the underlying group Z2 × Z2:

Main Result 2 ([Kub12], Proposition 1). The Hilbert polynomial of the Kimura 3-para-

meter model depends on the shape of the tree.

This result appeared in [Kub12]. In [DM12], Donten-Bury and Micha lek showed for several

other group-based models that the Hilbert polynomial depends on the shape of the tree.
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The second result of Buczyńska and Wísniewski states that the algebraic variety as-

sociated with the Jukes-Cantor binary model on a trivalent tree is normal. Thus the

corresponding affine semigroup is generated in degree one [BW07]. Buczyńska introduced

the phylogenetic semigroups on trivalent graphs as a generalization of the affine semigroups

associated with the Jukes-Cantor binary model on trees [Buc12].

In joint work with Buczyńska, Buczyński, and Micha lek [BBKM11], we defined the

phylogenetic semigroups on arbitrary graphs and studied the maximal degree of the minimal

generating set of the phylogenetic semigroup on a graph with first Betti number g. We

showed that g + 1 is an upper bound for this degree [BBKM11, Mic12]. In Chapter 4, we

present the part of [BBKM11] where we study lower bounds for this degree:

Main Result 3 ([BBKM11], Example 4.9). For g even, there is a graph with first Betti

number g such that the maximal degree of the minimal generating set of its phylogenetic

semigroup is g + 1. For g odd, there is a graph with first Betti number g such that this

maximal degree is g.

The minimal generating sets of phylogenetic semigroups have been described for triva-

lent trees [BW07] and for the trivalent graphs with first Betti number 1 [Buc12]. In Chap-

ter 5, we extend these results in several ways. We characterize the minimal generators

of degree d ≤ 2 of the phylogenetic semigroup on any trivalent graph. Moreover, for any

graph with first Betti number g ≤ 1 and for any trivalent graph with first Betti number 2

we describe the minimal generating set of its phylogenetic semigroup.

Based on the work of Sturmfels and Xu [SX10], Manon showed that the semigroup

algebras of phylogenetic semigroups are toric degenerations of the SL2(C) conformal block

algebras [Man09]. Moreover, in [Man12a] he showed that semigroup algebras of rank two

graded Berenstein-Zelevinsky triangles are toric degenerations of SL3(C) conformal block

algebras.

It follows from this result of Manon that the Hilbert polynomial of the semigroup of

rank two graded BZ triangles on a trivalent tree does not depend on the shape of the tree.

This generalizes the result of Buczyńska and Wísniewski that the Hilbert polynomial of the

Jukes-Cantor binary model on a trivalent tree does not depend on the shape of the tree,

which was not generalizable to other group-based models [Kub12, DM12].

Motivated by these results we ask how group-based models and BZ triangles are related

to each other. In Chapter 6, we establish a connection between semigroups associated with

the group-based model with the underlying group Zr+1 and rank r BZ triangles:

Main Result 4. A semigroup associated with the group-based model with the underlying

group Zr+1 is included in the projection of the semigroup of rank r BZ triangles to highest

weights. For r = 1, 2, the equality holds.

This theorem is a part of joint work with Christoper Manon.
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Chapter 1

Preliminaries

This is an introductory chapter. We will cover basic topics that will be used throughout

the dissertation. In Section 1.1, we will explain our notation. In Section 1.2, we will

introduce lattice polytopes and affine semigroups. In Section 1.3, we will recall the basics

about toric varieties, and discuss the correspondence between lattice polytopes and toric

varieties. Section 1.4 contains an introduction to phylogenetic algebraic geometry. Finally,

we will cover toric fiber products in Section 1.5.

1.1 Notation

For n ∈ N, we denote [n] = {1, 2, . . . , n}. Let u = (u1, . . . , ud) ∈ Zd. We denote by xu the

monomial xu1

1 · . . . · xud

d . Let A = {a1 . . . , an} ⊂ Rd be a set of real vectors. We denote by

NA = {
∑

niai : ni ∈ N} the affine semigroup generated by A, by ZA = {
∑

niai : ni ∈ Z}

the lattice generated by A, by conv(A) = {
∑

λiai : 0 ≤ λi ≤ 1,
∑

λi = 1} the convex hull

of A, and by cone(A) = {
∑

λiai : λi ≥ 0} the cone generated by A.

Let G be a graph. The valency or degree of a vertex is the number of edges attached

to it (a loop counts twice). A graph is trivalent, if all its vertices have degree one or three.

Degree one vertices are called leaves, edges attached to them are called leaf edges. Vertices

that are not leaves are called inner nodes, and edges that are not leaf edges are called inner

edges. We denote vertices by V , leaves by L, inner nodes by I, and edges by E. Where

necessary, we also use V (G), L(G), I(G), and E(G). A claw tree is a tree with one inner

node. The claw tree with three leaves is called tripod. We denote the disjoint sum of graphs

G1 and G2 by G1⊔G2. We denote by Ge the graph obtained from G by cutting an internal

edge e. More specifically, cutting an internal edge e means replacing e by two leaf edges

e1 and e2 where ∂1(e1) = ∂1(e) and ∂1(e2) = ∂2(e). Here ∂1(e), ∂2(e) denote endpoints of

an edge e. Let G1 and G2 be graphs with distinguished leaves l1 and l2, respectively. We

denote by G1 ⋆ G2 their graft, that is the graph obtained from G1 and G2 by removing

leaves l1, l2, and identifying corresponding leaf edges.
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1.2 Lattice Polytopes and Affine Semigroups

In this section, we will cover basics about lattice polytopes and affine semigroups. We

assume some familiarity with polyhedra, see for example [Zie95, Grü03]. Definitions in this

section are based on [Zie95, MS05, CLS11, Pie11].

Definition 1.1. A lattice L is a free abelian group in Rd. A lattice polytope P ⊂ Rd with

respect to a lattice L is a polytope whose vertices lie in a lattice L. If there is no confusion

about the lattice, we often omit “with respect to a lattice L”. Lattice points of a lattice

polytope P are the elements of P ∩ L.

One typically considers lattice polytopes with respect to the standard lattice Zd or the

lattice generated by the vertices of the polytope.

Definition 1.2. A subdivision S of a polytope P ⊂ Rd is a finite collection of polytopes

such that

1. the union ∪Q∈SQ of polytopes in S is P ,

2. if Q ∈ S, then all the faces of Q are also in S,

3. the intersection Q1 ∩Q2 ∈ S of two polytopes Q1, Q2 ∈ S is a face of both of Q1 and

of Q2.

A subdivision is a triangulation if all the polytopes in S are simplices.

Let A = {a1, . . . , an} ⊂ P be a point configuration containing vertices of P , and ω a

vector in Rn. The lower hull of conv{(a1, ω1), . . . , (an, ωn)} ⊂ Rd+1 gives a subdivision Sω

of P . More specifically, conv{ai1 , . . . , aik} ∈ Sω if and only if conv{(ai1 , ωi1), . . . , (aik , ωik)}

is a face of the lower hull. A subdivision that can be constructed in such a way is called a

regular subdivision of P . When we want to give priority to the point configuration A, then

we say a regular subdivision of A. A regular subdivision that is a triangulation is called a

regular triangulation.

Let π : Rd → Rd′ be a projection map, and S′ a subdivision of π(P ). Intersecting

π−1(Q) with P for each Q ∈ S′ gives the pullback subdivision π∗S′ of P .

A lattice simplex conv{v0, . . . , vd} ⊂ Rd is unimodular, if |det(v1 − v0, . . . , vd − v0)| = 1.

A triangulation by unimodular simplices is called a unimodular triangulation.

Sometimes we denote a subdivision S of a polytope P by ∪m
i=1Pi where P1, . . . , Pm are

the maximal dimensional polytopes in the subdivision,.

Definition 1.3. For k ∈ N, the kth dilation of a lattice polytope P is the lattice polytope

kP = {kx : x ∈ P}.

Definition 1.4. A lattice polytope P is normal if

P ∩ L + . . . + P ∩ L
︸ ︷︷ ︸

k times

= kP ∩ L

for all k ∈ N.
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The inclusion ⊆ always holds. Thus normality means that all lattice points of kP are

generated by lattice points of P .

Definition 1.5. The function

ehrP (k) = |kP ∩ L|

taking each k ∈ N to the number of the lattice points in kP is the Ehrhart function of P .

Theorem 1.6 ([MS05], Theorem 12.2). The function ehrP (k) : N → N is a polynomial of

degree equal to the dimension of P , named the Ehrhart polynomial of P .

Besides dimension, one can read other information about a lattice polytope from its

Ehrhart polynomial. For example, the leading coefficient of this polynomial is equal to the

volume of the lattice polytope.

Example 1.7. The Ehrhart polynomial of

P = conv{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

with respect to the standard lattice Z3 is

ehrP (k) =
1

3
k3 + k2 +

5

3
k + 1,

and with respect to the lattice {x ∈ Z3 :
∑3

i=1 xi is even} generated by the vertices of P is

ehrP (k) =
1

6
k3 + k2 +

11

6
k + 1.

Definition 1.8. A function

φ : Rd → Rd

x 7→ Ax + b

with A ∈ Zd×d, |det(A)| = 1, and b ∈ Zd is affine unimodular.

Lemma 1.9. Let P ⊂ Rd be a lattice polytope and φ : Rd → Rd an affine unimodular map.

Then

ehrP (k) = ehrφ(P )(k).

Corollary 1.10 ([Kan98], Proposition 5). Let P,Q ⊂ Rd be lattice polytopes. If there are

subdivisions ∪m
i=1Pi, ∪

m
i=1Qi, and a homeomorphism φ : P → Q such that

1. φ(Pi) = Qi for i = 1, . . . ,m,

2. the map φ is affine unimodular on each Pi,

then ehrP (k)=ehrQ(k).
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Definition 1.11. A semigroup is a set S with an associative binary operation and an

identity element. A semigroup homomorphism is a function between two semigroups that

preserves the binary operation and the identity element. The semigroup S is an affine

semigroup, if it is finitely generated and can be embedded in a lattice, i.e. S ∼= NA where

A = {a1, . . . , an} ⊂ L. If there exists a vector ω ∈ Rd such that ai · ω ∈ N for i = 1, . . . , n,

then we say that S is Z-graded with deg(ai) = ai · ω for i = 1, . . . , n.

Remark. A semigroup is often defined as a set with an associative binary operation, and a

semigroup with an identity element is called a monoid. We stick with the notation in the

field of combinatorial commutative algebra where an identity element is required from a

semigroup.

Example 1.12. Let P ⊂ Rd be a lattice polytope with respect to a lattice L ⊂ Rd. Let

S = cone(P × {1}) ∩ (L× {1}). By Gordan’s Lemma, S has a finite generating set, hence

is an affine semigroup. We say that S is the affine semigroup associated with P . The

affine semigroup S is normal if and only if P is normal. We usually consider S together

with the Z-grading induced by the functional ω = {0, . . . , 0, 1} ∈ Rd+1, i.e. the elements

of (P × {1}) ∩ (L × {1}) have degree one. If the affine semigroup S is normal then it is

generated by degree one elements.

1.3 Toric Varieties

Toric geometry is a part of algebraic geometry that can be studied using combinatorial

tools. More specifically, there is a well-known correspondence between toric varieties and

lattice polytopes. This correspondence is consistent with many properties of toric varieties

and lattice polytopes such as dimension, normality, smoothness etc. As a result, questions

about toric varieties can frequently be translated to the language of lattice polytopes, and

solved using combinatorial methods. Toric varieties are also often used for testing theories

in algebraic geometry.

In this section, we will introduce the basics of toric geometry, and then discuss the

aforementioned correspondence between toric varieties and lattice polytopes. Standard

references on toric geometry are [Oda88, Ful93, Stu96, CLS11]. All definitions in this

section are taken almost directly from [Stu96].

Let A = {a1, . . . , an} be a list of vectors in Zd. Let π be the semigroup homomorphism

π : Nn → Zd

u = (u1, . . . , un) 7→ u1a1 + . . . + unan.

The image of π is the semigroup NA. The map π lifts to a semigroup algebra homo-

morphism

π̂ : C[x1, . . . , xn] → C[t±1
1 , . . . , t±1

d ]

xi 7→ tai .
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Definition 1.13. A toric ideal is the kernel of π̂ for some A. It is denoted by IA.

Definition 1.14. An affine toric variety is the zero set of a toric ideal IA in Cn

{x ∈ Cn : f(x) = 0 ∀f ∈ IA}.

It is denoted by YA. A projective toric variety is the zero set of a homogeneous toric ideal

IA in Pn−1(C). It is denoted by XA.

The varieties XA and YA contain the torus (ta1 , . . . , tan) with t ∈ (C∗)d as a Zariski

open subset. In general, one could define a toric variety as an irreducible variety containing

a torus as a Zariski open subset such that the action of the torus on itself extends to an

action on the variety [CLS11, Definition 3.1.1]. However, in this dissertation we assume

that toric varieties are embedded as in Definition 1.14. Moreover, in contrast to [Ful93] we

do not require toric varieties to be normal.

Every vector u ∈ Zn can be written as u+ − u− where u+ is the non-negative and u−

is the negative support of u. Let ker(π) be the sublattice of Zn consisting of all vectors u

with π(u+) = π(u−).

Lemma 1.15 ([Stu96], Corollary 4.3). IA =< xu
+

− xu
−

: u ∈ ker(π) >.

Lemma 1.16 ([CLS11], Proposition 1.1.11). An ideal I ⊆ C[x1, . . . , xn] is toric if and only

if it is prime and generated by binomials.

Now we will study the correspondence between projective toric varieties and lattice

polytopes, their Hilbert and Ehrhart polynomials, initial ideals and regular triangulations.

Lemma 1.17 ([Stu96], Lemma 4.14). The ideal IA is homogeneous if and only if there

exists a vector ω ∈ Qd such that ai · ω = 1 for i = 1, . . . , n.

By the previous lemma, if IA is homogeneous then the elements of A lie on an affine

hyperplane of Rd. Assuming this is the case, define the polytope P = conv(A). It is a

lattice polytope with respect to the lattice ZA.

Definition 1.18. The Hilbert function of XA is

HilbA(k) = |{ai1 + . . . + aik : ai1 , . . . , aik ∈ A}|, k ≥ 0.

There exists a polynomial hA(k) such that hA(k) = HilbA(k) for k ≫ 0. It is called the

Hilbert polynomial of XA.

Hilbert polynomials are important invariants of projective varieties. One can read the

degree and dimension of a projective variety from its Hilbert polynomial, see [Har77].

Instead of defining normality for projective varieties, we will use [CLS11, Proposi-

tion 2.2.18, Definition 2.3.14, Theorem 2.4.1] to state a modified version of [Stu96, Theo-

rem 13.11] that is sufficient for our purposes.

Theorem 1.19 ([Stu96], Theorem 13.11). If P is normal and A = P ∩ZA, then the Hilbert

polynomial hA and the Ehrhart polynomial ehrP are equal.

7



Definition 1.20. A total order ≺ on Nn is a term order if 0 is the unique minimal element

and a ≺ b implies a + c ≺ b + c for all a, b, c ∈ Nn. Fix a term order ≺. For a polynomial

f =
∑

cix
ai , the initial monomial in≺(f) is cix

ai with ai maximal with respect to ≺. The

initial ideal of an ideal I with respect to ≺ is

in≺(I) =< in≺(f) : f ∈ I > .

The initial complex ∆≺(I) of I with respect to ≺ is the simplicial complex on the vertex

set {1, . . . , n} with F ⊆ {1, . . . , n} as a face of ∆≺(I) if there is no polynomial f ∈ I whose

initial monomial in≺(f) has support F .

Fix ω = (ω1, . . . ωn) ∈ Rn. For a polynomial f =
∑

cix
ai , the initial form inω(f) is the

sum of cix
ai with ω · ai maximal. The initial ideal of an ideal I with respect to ω is

inω(I) =< inω(f) : f ∈ I > .

Proposition 1.21 ([Stu96], Proposition 1.11). For any term order ≺ and any ideal I ∈

C[x1, . . . , xn], there exists a non-negative integer vector ω ∈ Nn such that inω(I) = in≺(I).

Theorem 1.22 ([Stu96], Theorem 8.3). The regular triangulations of A are the initial

complexes of the toric ideal IA. More precisely, if ω ∈ Rn represents ≺ for IA, then

∆≺(IA) = Sω.

Lemma 1.23 ([Stu96], Corollary 8.9). The initial ideal in≺(IA) is square-free if and only

if the corresponding regular triangulation of A is unimodular.

Example 1.24. Let

A =((0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0),

(1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)).

Then

IA =< x00000x11110 − x11000x00110, x10101x01011 − x10011x01101 > .

The polytope P = conv(A) is normal with respect to the lattice ZA and A = P ∩ ZA.

Hence, the Hilbert polynomial of XA and the Ehrhart polynomial of P are equal.

1.4 Phylogenetic Algebraic Geometry

Phylogenetic algebraic geometry studies algebraic varieties associated with statistical mod-

els on phylogenetic trees. A phylogenetic tree is a tree of species that describes evolutionary

progress based on genetic information, as illustrated in Figure 1.1. In this section, we will

explain how to obtain an algebraic variety associated with a statistical model on a phylo-

genetic tree. Of special interest will be group-based models that give toric varieties. Our

discussion is based on [ERSS05, SS05b, Sul07].

Let T be a rooted tree with n leaves. Associate with each vertex a random variable

with k possible states. Denote the distribution of the random variable at the root by

8



human chimp. gorilla orangutan gibbon

Figure 1.1: A phylogenetic tree

π = (π1, . . . , πk). Associate with each edge e a k × k transition matrix Me. The (i, j)th

entry of Me denotes the probability that the ith state transforms to the jth state along the

edge e. The entries of π and Me are called model parameters. There are N = k + |E|k2

of them. Specifying a subset P ⊆ RN of biologically meaningful model parameters means

choosing a statistical model. The subset P is usually given by polynomial equations and

inequalities.

Random variables at leaves are observed variables. There are kn possibilities for mak-

ing an observation at n leaves simultaneously. The probability of making a particular

observation σ is given by a polynomial φσ. Polynomials φσ define a function

φ : RN → Rkn

from the space of model parameters to the space of joint observations.

In phylogenetic algebraic geometry, conditions on the model are weakened. The as-

sumption that the model parameters are non-negative reals that sum up to one is dropped.

Instead, one considers the subset P ⊆ CN that is given by the polynomial equations that de-

fined the particular model. The central object of study in phylogenetic algebraic geometry

is the Zariski closure of φ(P ).

Example 1.25 ([ERSS05], Section 2). Let T be a rooted tree with each vertex correspond-

ing to a random variable with two possible states zero and one.

1 2 3

π

a
b

c d

Let π = (π0, π1) denote the root distribution and

Ma =
(
a00 a01
a10 a11

)
Mb =

(
b00 b01
b10 b11

)
Mc =

(
c00 c01
c10 c11

)
Md =

(
d00 d01
d10 d11

)

the edge transition matrices representing the probabilities of transition between the states.

Then the probability of observing the letter i at the leaf 1, the letter j at the leaf 2, and

the letter k at the leaf 3 is

φijk = π0a0ib00c0jd0k + π0a0ib01c1jd1k + π1a1ib10c0jd0k + π1a1ib11c1jd1k.

9



Eight polynomials Φijk give the map

φ : C18 → C8.

Fixing a parameter space P ⊆ C18 specifies the model. The object of interest is the Zariski

closure of φ(P ).

In this dissertation, we are interested in group-based models.

Definition 1.26. Let G be a finite additive abelian group. If the k states correspond to

the elements of G and the matrices Me are invariant under the action of G, i.e. for all

h, i, j ∈ G, the matrix entry corresponding to (i, j) equals the matrix entry corresponding

to (h + i, h + j), then the associated statistical model is called a group-based model.

Example 1.27. Group-based models used in computational biology are Jukes-Cantor and

Kimura models. The Jukes-Cantor binary model [JC69], also known as the Cavender-

Farris-Neyman or just Neyman model [Ney71, Far73, Cav78], is a group-based model with

the underlying group Z2. Transition matrices are of the form

Me =

(

a b

b a

)

.

The Kimura 3-parameter model [Kim81] is a group-based model with the underlying group

Z2 × Z2. Transition matrices are of the form

Me =








a b c d

b a d c

c d a b

d c b a








.

It was shown by Evans and Speed that the algebraic variety associated with the Kimura

3-parameter model on a tree is toric after the change of coordinates given by the discrete

Fourier transform [ES93]. Székely, Steel, and Erdös extended this approach to group-based

models [SSE93] and Micha lek to an even larger family of G-models [Mic11]. We will not

explain this change of coordinates here as it is not important for further understanding,

see [SS05b, Section 2] for a nice exposition. Instead, we will directly define toric vari-

eties associated with group-based models after applying the discrete Fourier transform as

in [SS05b, Section 3] and [Sul07, Section 3.4].

We add an extra edge at the root of T to achieve a tree with n + 1 leaves. We denote

the new tree also by T . Label the new leaf by n + 1 and other leaves by 1, . . . , n. Direct

the edges away from the root. A leaf l is a descendant of an edge e if there is a directed

path from e to l. Denote by de(e) the set of all descendants of the edge e.

Let G be a finite additive abelian group. For a sequence g1, . . . , gn in G, we define

ge =
∑

i∈de(e)

gi

10



where e is an edge of T . Let

C[x] = C[xg1,...,gn : gi ∈ G] and C[t] = C[t
(e)
h : e ∈ E, h ∈ G],

and consider the ring homomorphism

φG,T : C[x] → C[t]

xg1,...,gn 7→
∏

e∈E

t(e)ge .

Definition 1.28. The ideal IG,T = ker(φG,T ) is the ideal of the group-based model with a

group G and a tree T .

This is a homogeneous toric ideal. By the discussion after Lemma 1.17, we can define

the associated lattice polytope.

Definition 1.29. The lattice polytope of the group-based model with a group G and a

tree T is

PG,T = conv{x ∈ {0, 1}E×G : ∃g1, . . . , gn ∈ G such that, ∀e ∈ E and ∀h ∈ G,

x
(e)
h = 1 if h =

∑

i∈de(e)

gi and x
(e)
h = 0 otherwise}

with respect to the lattice generated by its vertices.

In practice, the construction of the polytope PG,T works as follows. Label the edges of

T with elements of G such that at each inner vertex the label on the incoming edge equals

the sum of the labels on the outgoing edges. Then replace group elements by unit vectors

labeled by these group elements. Finally, write these |E| unit vectors in RG as one vector

in RE×G. The polytope PT is the convex hull of vectors corresponding to all such labelings

of the edges of T .

The lattice polytope PG,T lives in the linear subspace of RE×|G| defined by
∑

h∈G x
(e)
h = 1

for all edges e ∈ E. Hence, forgetting the coordinate x
(e)
0 for all e ∈ E gives a lattice

polytope lattice equivalent to PG,T . We often consider this projection of PG,T , and denote

it also by PG,T .

Remark. If it is clear from the context which abelian group G is implied, then we often

write IT , PT , and LT instead of IG,T , PG,T , and LG,T .

Example 1.30 ([BW07], Definition 2.9). The lattice polytope of the Jukes-Cantor binary

model and a trivalent tree T is

PZ2,T = conv{x ∈ {0, 1}E :
∑

e∋v

xe ∈ 2Z for every v ∈ I}

with respect to the lattice

LZ2,T = {x ∈ ZE :
∑

e∋v

xe ∈ 2Z for every v ∈ I}.
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The polytope in Example 1.7 is the lattice polytope of the Jukes-Cantor binary model on

the tripod. The polytope in Example 1.24 is the lattice polytope of the Jukes-Cantor binary

model on the trivalent 4-leaf tree.

1.5 Toric Fiber Products

The toric fiber product produces from two multigraded homogeneous ideals another multi-

graded homogeneous ideal. This construction generalizes the Segre embedding of projective

spaces. Instead of studying a property on the toric fiber product, one can often study it on

the original ideals. Generating sets, Gröbner bases and Hilbert functions provide examples

of properties that can be studied in such a way.

The use of the toric fiber product has been especially successful in algebraic statistics:

Original ideals correspond to graphs or simplicial complexes, and the toric fiber product cor-

responds to the graph or simplicial complex obtained by gluing the original structures. For

example, Hoşten and Sullivant used the toric fiber product for hierarchical models [HS02],

Dobra and Sullivant for k-way tables [DS04], Sturmfels and Sullivant for group-based mod-

els [SS05b]. Formally the notion was defined by Sullivant [Sul07], and was further explored

by Engström, Kahle, and Sullivant [EKS11]. In this section, we define the toric fiber prod-

uct of ideals and vector configurations as in [Sul07] and [EKS11], respectively, and then

extend the latter definition to lattice polytopes.

Definition 1.31. Let r be a positive integer and s, t vectors of positive integers of length

r. Let

C[x] = C[xij : i ∈ [r], j ∈ [si]]

and

C[y] = C[yik : i ∈ [r], k ∈ [ti]]

be polynomial rings together with a multigrading

deg(xij) = deg(yik) = ai ∈ Zd.

Assume that there is ω ∈ Rd such that ai · ω = 1 for i = 1, . . . , r. This means that ideals

that are homogeneous with respect to this multigrading are also homogeneous with respect

to the standard grading. Let A denote {a1, . . . , ar}.

Let I and J be homogeneous ideals with respect to this multigrading in C[x] and C[y],

respectively. Therefore R = C[x]/I and S = C[y]/J are also multigraded rings. Let

C[z] = C[zijk : i ∈ [r], j ∈ [si], k ∈ [tj ]]

be a polynomial ring. Define a map φI,J from C[z] to R⊗ S by

zijk 7→ xij ⊗ yik.

The toric fiber product of the ideals I and J is the kernel of the map φ

I ×A J = ker(φI,J).
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Example 1.32 ([Sul07], Example 1.2). If r = 1 and I = J = 0, then

I ×A J =< zj1k1zj2k2 − zj1k2zj2k1 : j1, j2 ∈ [s], k1, k2 ∈ [t] >

is the Segre product of Ps−1 and Pt−1.

Definition 1.33. Let r be a positive integer and s, t vectors of positive integers of length

r. Let

B = {bij : i ∈ [r], j ∈ [si]} ⊂ Zd′

and

C = {cik : i ∈ [r], k ∈ [ti]} ⊂ Zd′′

be vector configurations together with linear maps π′ : Zd′ → Zd and π′′ : Zd′′ → Zd such

that

π′(bij) = π′′(cik) = ai ∈ Zd.

Let A denote {a1, . . . , ar}. The toric fiber product of the vector configurations B and C with

respect to A is

B ×A C = {(bij , c
i
k) ∈ B × C : i ∈ [r], j ∈ [si], k ∈ [tj ]}.

Let IB and IC be toric ideals corresponding to the vector configurations B and C.

By [EKS11, Section 2.3],

IB ×A IC = IB×AC . (1.1)

Definition 1.34. Let r be a positive integer and s, t vectors of positive integers of length

r. Let P ′ ⊂ Rd′ , P ′′ ⊂ Rd′′ be lattices polytopes with respect to lattices L′ ⊂ Zd′ , L′′ ⊂ Zd′′

such that

P ′ ∩ L′ = {bij : i ∈ [r], j ∈ [si]}

and

P ′′ ∩ L′′ = {cik : i ∈ [r], k ∈ [ti]}

together with linear maps π′ : L′ → Zd, π′′ : L′′ → Zd such that

π′(bij) = π′′(cik) = ai ∈ Zd.

Let A denote {a1, . . . , ar}. The toric fiber product of the lattice polytopes P ′ and P ′′ is

P ′ ×A P ′′ = conv{(P ′ ∩ L′) ×A (P ′′ ∩ L′′)}.

It is a lattice polytope with respect to the lattice generated by (P ′ ∩ L′) ×A (P ′′ ∩ L′′).

By (1.1),

IP ′∩L′ ×A IP ′′∩L′′ = I(P ′∩L′)×A(P ′′∩L′′).

Group-based models provide examples of toric fiber products. Fix a finite additive

abelian group G. Let T be a directed tree with an inner edge e. Cutting e induces a

decomposition of T as T+
e ⋆ T−

e . Let C[x],C[x]+,C[x]− denote the ambient polynomial

rings of IG,T , IG,T+
e
, IG,T−

e
, respectively.
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Theorem 1.35 ([Sul07], Theorem 3.10). Let T be a tree with an inner edge e. For each

variable xg in C[x],C[x]+, and C[x]−, let deg(xg) = ege, the standard unit vector with label

ge. Let A = {eh : h ∈ G}. Then

IG,T = IG,T+
e
×A IG,T−

e
.

Corollary 1.36. Let T be a tree with an inner edge e. For each lattice point xg of

PG,T , PG,T+
e
, and PG,T−

e
, let deg(xg) = ege, the standard unit vector with label ge. Let

A = {eh : h ∈ G}. Then

PG,T = PG,T+
e
×A PG,T−

e
.

Example 1.37. The polytope in Example 1.24 is the toric fiber product of the polytope

in Example 1.7 with itself with respect to the projection onto an edge of the tripod.

14



Chapter 2

Combinatorial Proof of a Theorem

by Buczyńska and Wísniewski

2.1 Introduction

This chapter is based on discussions with Christian Haase and Andreas Paffenholz.

The Jukes-Cantor binary model is the simplest group-based model with the underlying

group Z2. Algebraic varieties associated with it are well-studied [SS05b, BW07, CP07,

DM12]. The Jukes-Cantor binary model turns out to be a very special model having

beautiful properties not true or not known for other group-based models. In this chapter,

we are interested in one of them.

Theorem 2.1 ([BW07], Theorem 2.24). The Hilbert polynomial of the algebraic variety

associated with the Jukes-Cantor binary model on a trivalent tree depends only on the

number of leaves of the tree, and not on its shape.

Buczyńska generalized this result to the phylogenetic semigroups on trivalent graphs

that generalize the Jukes-Cantor binary model on trees [Buc12]. Specifically, she showed

that the Hilbert polynomial of the phylogenetic semigroup on a trivalent graph depends

only on the first Betti number and the number of leaves of the graph.

In the original proof of Theorem 2.1, Buczyńska and Wísniewski showed that any two

algebraic varieties associated with the Jukes-Cantor binary model on trees with the same

number of leaves are deformation equivalent [BW07]. Alternative proofs have been given

by Sturmfels and Xu using sagbi degenerations [SX10], and by Ilten using deformations of

complexity-one T -varieties [Ilt10]. We will give a purely combinatorial proof using contin-

uous piecewise affine unimodular maps of lattice polytopes. However, also our proof has a

geometric meaning. We construct Gröbner degenerations of algebraic varieties associated

with the Jukes-Cantor binary model to a common initial scheme.

Given two lattice polytopes P,Q ∈ Rd with equal Ehrhart polynomials, it is not known

if there always exists a continuous piecewise affine unimodular map φ : P → Q. Such maps

are known between order and chain polytopes [Sta86], and Gelfand-Tsetlin and Feigin-

Fourier-Littelmann polytopes [ABS11]. In dimension two, Greenberg showed that there
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always exists a continuous piecewise affine unimodular map between Ehrhart equivalent

lattice polytopes [Gre93]. Kantor conjectured that in higher dimensions such a map does

not need to exist [Kan98]. The best result known is by Haase and McAllister [HM08]:

They show that two integral polytopes are Ehrhart equivalent if and only if they can be

decomposed into open rational polytopes P1, P2, . . . , Pn and Q1, Q2, . . . , Qn, respectively,

such that Pj is equivalent to Qj via GLd(Z) ⋉Qd. This map need not to be continuous.

The situation is different, if instead of looking for piecewise affine unimodular maps, we

look for piecewise volume-preserving maps. In [Pak13, Chapter 18], Pak gave a constructive

proof showing the existence of a continuous piecewise linear volume-preserving map between

any two polytopes of equal volume.

In this chapter, we consider families of lattice polytopes indexed by trivalent trees. We

study when is the Ehrhart polynomial of a lattice polytope in such a family independent

of the shape of the tree. In Section 2.2, we show how to reduce this question to a single

polytope associated with the 4-leaf tree, and give a sufficient condition for the Ehrhart

polynomial to be independent of the shape of a tree. In Section 2.3, we apply this condition

to the Jukes-Cantor binary model to give a combinatorial proof of Theorem 2.1.

2.2 Families of Lattice Polytopes

For any tree T and an inner edge e of T , denote by T+
e and T−

e the trees obtained from T

by cutting the edge e.

Definition 2.2. Let {PT } be a family of lattice polytopes with respect to lattices {LT }

indexed by trivalent trees. Assume that

1. for any T , e ∈ E, and a fixed k ∈ N, there is a linear map pT,e : LT → Zk ,

2. for any T and e an inner edge of T , the polytope PT is the toric fiber product of PT+
e

and PT−
e

with respect to the linear maps pT+
e ,e and pT−

e ,e.

Then we say that {PT } is a toric fiber product family of lattice polytopes indexed by

trivalent trees.

Example 2.3. Let G be a finite additive abelian group. Then the family {PG,T } of lattice

polytopes associated with the group-based model with the underlying group G is a toric

fiber product family. By Corollary 1.36, the polytope PG,T is the toric fiber product of

PG,T+
e

and PG,T−
e

with respect to the projections onto the edge e.

The aim of this section is to give a sufficient condition for the Ehrhart polynomial of a

toric fiber product family of lattice polytopes indexed by trivalent trees not to depend on

the shape of the tree, but only on the number of leaves. First, we explain how to reduce the

question about the invariance of the Ehrhart polynomial to one polytope associated with

the trivalent 4-leaf tree instead of considering an infinite number of polytopes.
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Remark. There are two reasons why we do not want to restrict ourselves only to group-

based models, and instead use the more general Definition 2.2. The Jukes-Cantor binary

model seems to be the only group-based model whose Ehrhart polynomial does not depend

on the shape of the tree, see [Kub12, DM12]. Thus there is no need for a sufficient condition

for other group-based models. However, there is a family of lattice polytopes associated

with rank two BZ triangles that is a toric fiber product family and has this property,

see [Man12a].

We recall the notion of the mutation equivalence of trivalent trees defined by Buczyńska

and Wísniewski in [BW07]. Let T0 be the trivalent 4-leaf tree and e its inner edge. There

are three non-isomorphic labelings of the leaves of T0, shown in Figure 2.1. Given four

rooted trivalent trees Ti where i = 1, . . . , 4, we can produce three trees by grafting the tree

Ti along the ith leaf of the labeled T0. These three trees need not be different.

T1

T2

T3

T4

e
T1

T3

T2

T4

e
T1

T4

T3

T2

e

Figure 2.1: Labelings of the trivalent 4-leaf tree

Definition 2.4 ([BW07], Definition 2.17). We say that there exists an elementary mutation

along the edge e from one of the above trees to the other two. We say that two trees are

mutation equivalent if there exists a sequence of elementary mutations from one to the

other.

Lemma 2.5 ([BW07], Lemma 2.18). Any two trivalent trees with the same number of

leaves are mutation equivalent.

If we are able to show that ehrPT
(k) = ehrPT ′ (k) for any two trivalent trees T and

T ′ that differ by an elementary mutation, then it follows for any two trees with the same

number of leaves by applying a sequence of elementary mutations. Hence, we can restrict

ourselves to the pairs of trivalent trees that differ by an elementary mutation.

Let T and T ′ be trivalent trees that differ by an elementary mutation along an edge e.

Let T0 be the trivalent 4-leaf tree with the inner edge e. For i = 1, . . . , 4, let Ti be rooted

trivalent trees such that we can produce T and T ′ by grafting the tree Ti along the ith leaf

of a labeled T0. Denote by pi and p′i the projections corresponding to the edges labeled by

i in those labelings of the leaves of T0 that correspond to T and T ′.

Lemma 2.6. Let ∪n
j=1Pj and ∪n

j=1Qj be two subdivisions of PT0
and φ : PT0

→ PT0
a

homeomorphism with

1. φ(Pj) = Qj for all j,

2. φ is affine unimodular on each Pj ,
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3. pi(v) = p′i(φ(v)) for all lattice points v of PT0
and i = 1, . . . , 4.

Then there exist subdivisions ∪n
j=1Pj and ∪n

j=1Qj of PT and PT ′ , respectively and a home-

omorphism φ : PT → PT ′ such that

1. φ(Pj) = Qj for all j,

2. φ is affine unimodular on each Pj .

Proof. Polytopes PT and PT ′ are toric fiber products of PTi
where i = 0, . . . , 4. Hence, there

are projections from PT and PT ′ to PT0
. Subdivisions ∪n

j=1Pj and ∪n
j=1Qj can be pulled

back to subdivisions ∪n
j=1Pj of PT and ∪n

j=1Qj of PT ′ . Define φ : PT → PT ′ as follows:

φ|PT0
:= φ and φ|PTi

:= idPTi
for i = 1, . . . , 4. The condition pi(v) = p′i(φ(v)) ensures that

φ is well-defined.

Corollary 2.7. If the assumptions of Lemma 2.6 are fulfilled, then ehrPT
(k) = ehrPT ′ (k).

Finally, we describe one case where we can construct a map like in Lemma 2.6. We

will use the connection between triangulations of lattice polytopes and initial ideals of

corresponding toric ideals.

We fix a labeling of the leaves of T0. For i ∈ {1, 2, 3, 4}, let pi be the projection onto the

edge of T0 labeled by i in this labeling. Assume that there is a one-to-one correspondence

between the lattice points of PT0
and their projections

{(p1(x), p2(x), p3(x), p4(x)) : x is a lattice point of PT0
}.

Moreover, assume that this set is independent of the labeling we fixed.

We fix also a second labeling of the leaves of T0. For i ∈ {1, 2, 3, 4}, let p′i be the

projection onto the edge of T0 labeled by i in this labeling. By the first assumption, we can

replace the subindices of the variables in the coordinate ring associated with PT0
by their

projections (p1(x), p2(x), p3(x), p4(x)), i.e. instead of

C[zx : x is a lattice point of PT0
],

we can consider

C[zp1(x),p2(x),p3(x),p4(x) : x is a lattice point of PT0
].

By the second assumption, the subindices of the variables in the coordinate rings

C[zp1(x),p2(x),p3(x),p4(x) : x is a lattice point of PT0
]

and

C[zp′
1
(x),p′

2
(x),p′

3
(x),p′

4
(x) : x is a lattice point of PT0

]

are equal. Denote the toric ideal associated with the lattice polytope PT0
in coordinates

zp1(x),p2(x),p3(x),p4(x) by IT0
and in coordinates zp′

1
(x),p′

2
(x),p′

3
(x),p′

4
(x) by I ′T0

.
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Proposition 2.8. If there exist term orders ≺ and ≺′ with in≺(IT0
) = in≺′(I ′T0

), then there

is a homeomorphism φ : PT0
→ PT0

that fulfills the 1. and 3. assumption of Lemma 2.6.

Proof. Let conv{x0, . . . , xd} be a maximal simplex in the triangulation ∆≺(IT0
). De-

fine φ on conv{x0, . . . , xd} as follows: Let φ(xj) be the unique lattice point of PT0
with

p′i(φ(xj)) = pi(xj) for i ∈ {1, . . . , 4}. Then conv{φ(x0), . . . , φ(xd)} is a maximal sim-

plex in the triangulation ∆≺′(I ′T0
), because in≺(IT0

) = in≺′(I ′T0
) and the monomial cor-

responding to conv{x0, . . . , xd} in C[zp1(x),p2(x),p3(x),p4(x) : x is a lattice point of PT0
] is the

same as the monomial corresponding to conv{φ(x0), . . . , φ(xd)} in C[zp′
1
(x),p′

2
(x),p′

3
(x),p′

4
(x) :

x is a lattice point of PT0
]. The 1. and 3. condition of Lemma 2.6. are fulfilled by the

definition of φ.

If φ fulfills also the 2. condition of Lemma 2.6, then we get a map like in Lemma 2.6.

Corollary 2.9. If there exist term orders ≺ and ≺′ with in≺(IT0
) = in≺′(I ′T0

) square-free,

then there is a homeomorphism φ : PT0
→ PT0

that fulfills the 1., 2., and 3. assumption of

Lemma 2.6.

Proof. Define φ as in Proposition 2.8. By Lemma 1.23, the triangulations ∆≺(IT0
) and

∆≺′(I ′T0
) are unimodular. Hence, the map φ is affine unimodular on each simplex.

2.3 Jukes-Cantor Binary Model

In this section, we apply Corollary 2.7, Proposition 2.8, and Corollary 2.9 to give a purely

combinatorial proof of Theorem 2.1: The Hilbert polynomial of the algebraic variety as-

sociated with the Jukes-Cantor binary model on a trivalent tree does not depend on the

topology of the tree.

By [BW07], algebraic varieties associated with the Jukes-Cantor model on trivalent

trees are normal. By Theorem 1.19, the Hilbert polynomial of the algebraic variety and

the Ehrhart polynomial of the lattice polytope associated with the Jukes-Cantor binary

model on a trivalent tree are equal. We recall that the lattice polytope associated with the

Jukes-Cantor binary model on a trivalent tree T is

PZ2,T = conv{x ∈ {0, 1}E :
∑

e∋v

xe ∈ 2Z for every v ∈ I}.

The associated lattice is

LZ2,T = {x ∈ ZE :
∑

e∋v

xe ∈ 2Z for every v ∈ I}.

In particular,

PZ2,T0
= conv

{

(0, 0, 0, 0, 0) (1, 1, 1, 1, 0) (1, 1, 0, 0, 0) (0, 0, 1, 1, 0)

(1, 0, 1, 0, 1) (0, 1, 0, 1, 1) (1, 0, 0, 1, 1) (0, 1, 1, 0, 1)

}

.
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Here the first four coordinates of PZ2,T0
correspond to the leaf edges of T0 labeled by 1, . . . , 4

in the first labeling in Figure 2.1, and the fifth coordinate corresponds to the inner edge.

Consider two different labelings of the leaves of T0, say the first and the second one in

Figure 2.1. The discussion for any other pair of labelings of the leaves of T0 is analogous.

The variables corresponding to the first labeling are

z0000, z1111, z1100, z0011, z1010, z0101, z1001, z0110,

and to the second labeling are

z0000, z1111, z1010, z0101, z1100, z0011, z1001, z0110.

The ambient coordinate ring is in both cases

C[z0000, z1111, z1100, z0011, z1010, z0101, z1001, z0110].

The toric ideals corresponding to the different labelings are

IZ2,T0
=< z0000z1111 − z1100z0011, z1010z0101 − z1001z0110 >,

I ′Z2,T0
=< z0000z1111 − z1010z0101, z1100z0011 − z1001z0110 > .

There are two different initial ideals that work for Proposition 2.8. We will explicitly

describe them in the next two subsections.

First transformation

Let ω be the weight vector that has 2’s corresponding to the variables z1100, z0011, z1010, z0101
and 1’s corresponding to the rest of the variables. The ideal

< z1100z0011, z1010z0101 > (2.1)

is a common initial ideal of IZ2,T0
and I ′Z2,T0

for any term order that refines the weight order

given by ω. The maximal simplices in the corresponding triangulations are

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (0, 0, 1, 1, 0), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

and

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 0, 1, 0, 1), (1, 1, 0, 0, 0), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (1, 0, 1, 0, 1), (0, 0, 1, 1, 0), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (0, 1, 0, 1, 1), (1, 1, 0, 0, 0), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 1, 1, 0), (0, 1, 0, 1, 1), (0, 0, 1, 1, 0), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1)}.

The first triangulation is mapped to the second one by the maps
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








1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 1 −1 0 1










x,










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 −1 1










x,










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

−1 0 0 1 1










x,










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 −1 1 0 1










x.

All these matrices have determinant ±1, and hence are unimodular with respect to the

standard lattice Z5. By Proposition 2.8 and Corollary 2.7, the Ehrhart polynomial of the

lattice polytope associated with the Jukes-Cantor binary model and a trivalent tree with

respect to the standard lattice depends only on the number of leaves of the tree.

Since the ideal (2.1) is square-free, by Corollary 2.9 and Corollary 2.7 we get the same

statement for the lattice generated by the vertices of the polytope. This implies Theorem 2.1

by Buczyńska and Wísniewski.

Remark. The min-max description of this map is

x′1 = x1,

x′2 = x3,

x′3 = x2,

x′4 = x4,

x′5 = x2 − x3 + x5 + min(x1 − x2 + x3 − x4, 0) − min(x1 + x2 − x3 − x4, 0).
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The min-max description can be constructed from the equalities

x1 − x2 + x3 − x4 = 0,

x1 + x2 − x3 − x4 = 0.

that define the triangulation above.

Second transformation

Let ω be the weight vector that has 2’s corresponding to the variables z0000, z1111, z1001,

z0110 and 1’s corresponding to the rest of the variables. The ideal

< z0000z1111, z1001z0110 > . (2.2)

is a common initial ideal of IZ2,T0
and I ′Z2,T0

for any term order that refines the weight order

given by ω. Maximal simplices in the corresponding triangulations are

conv{(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1)},

conv{(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1)},

conv{(1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1)},

conv{(1, 1, 1, 1, 0), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1)},

and

conv{(0, 0, 0, 0, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 0, 1, 1)},

conv{(0, 0, 0, 0, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 1)},

conv{(1, 1, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (1, 0, 0, 1, 1)},

conv{(1, 1, 1, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 1)}.

The first triangulation is mapped to the second one by the maps










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 1 −1










x,










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 1 1 0 −1










x,
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








1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 −1 −1 0 −1










x +










0

0

0

0

2










,










1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

−1 0 0 −1 −1










x +










0

0

0

0

2










.

All these matrices have determinant ±1, and hence are affine unimodular with respect

to the standard lattice Z5. By Proposition 2.8 and Corollary 2.7, the Ehrhart polynomial

of the lattice polytope associated with the Jukes-Cantor binary model and a trivalent tree

with respect to the standard lattice depends only on the number of leaves of the tree.

Since the ideal (2.2) is square-free, by Corollary 2.9 and Corollary 2.7 we get the same

statement for the lattice generated by the vertices of the polytope. This implies Theorem 2.1

by Buczyńska and Wísniewski.

Remark. The min-max description of this map is

x′1 = x1,

x′2 = x3,

x′3 = x2,

x′4 = x4,

x′5 = x1 + x4 − x5 − min(x1 − x2 − x3 + x4, 0) + min(2 − x1 − x2 − x3 − x4, 0).

Phylogenetic semigroups

In this subsection, we will explore the bijections established by the piecewise affine uni-

modular maps in the previous two subsections. Our goal is to explain how our method

gives a combinatorial proof of a result by Buczyńska about the Hilbert functions of the

phylogenetic semigroups on trivalent graphs.

Fix two labelings of the leaves of T0. For i ∈ {1, 2, 3, 4}, let pi, p
′
i be the projections

onto the edges of T0 labeled by i in the corresponding labelings. Recall the assumptions of

Section 2.2 that there is a one-to-one correspondence between the lattice points of PT0
and

their projections

{(p1(x), p2(x), p3(x), p4(x)) : x is a lattice point of PT0
},

and that this set is independent of the labeling we fixed. Hence, there is a natural bijection

f from the set

{x ∈ PT0
∩ LT0

: pi(x) = ui for i ∈ {1, 2, 3, 4}}
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to the set

{x ∈ PT0
∩ LT0

: p′i(x) = ui for i ∈ {1, 2, 3, 4}}

for all u ∈ {0, 1}4.

By the normality of PT0
, every element x of kPT0

∩LT0
can be written as x1+x2+. . .+xk

where x1, x2, . . . , xk ∈ PT0
∩ LT0

. Moreover, for a term order ≺ as in Proposition 2.8,

we define the canonical representation of x to be the sum x1 + x2 + . . . + xk such that

x1x2 . . . xk 6∈ in≺(IT0
). Define fk : kPT0

∩ LT0
→ kPT0

∩ LT0
by

fk(x) := f(x1) + f(x2) + . . . + f(xk)

where x1 + x2 + . . . + xk is the canonical representation of x. Since pi(xj) = p′i(f(xj)) for

all i ∈ {1, 2, 3, 4} and j ∈ {1, 2, . . . , k} by the definition of f , we have pi(x) = p′i(fk(x))

for all i ∈ {1, 2, 3, 4}. The map fk is bijective, because f(x1) + f(x2) + . . . + f(xk) is the

canonical representation of fk(x) for a term order ≺′ as in Proposition 2.8, hence we can

define the inverse of fk. Therefore, the map fk induces a bijection between the sets

{x ∈ kPT0
∩ LT0

: pi(x) = ui for i ∈ {1, 2, 3, 4}} (2.3)

and

{x ∈ kPT0
∩ LT0

: p′i(x) = ui for i ∈ {1, 2, 3, 4}} (2.4)

for all u ∈ N4 and k ∈ N.

Let T and T ′ be trivalent trees that differ by an elementary mutation along an edge e.

Let T0 be the trivalent 4-leaf tree with the inner edge e. For i = 1, . . . , 4, let Ti be rooted

trivalent trees such that we can produce T and T ′ by grafting the tree Ti along the ith leaf

of a labeled T0. Denote by pi and p′i the projections corresponding to the edges labeled by

i in those labelings of T0 that correspond to T and T ′.

The number of the lattice points in kPT is

∑

u∈N4

|{x ∈ kPT0
∩ LT0

: pi(x) = ui for i ∈ {1, 2, 3, 4}}|
4∏

i=1

|{x ∈ kPTi
∩ LTi

: xi = ui}|

(2.5)

where xi is the coordinate of x ∈ kPTi
∩ LTi

that corresponds to the edge of T that is

identified with the edge of T0 labeled by i. We get a similar formula for the number of the

lattice points in kPT ′ :

∑

u∈N4

|{x ∈ kPT0
∩ LT0

: p′i(x) = ui for i ∈ {1, 2, 3, 4}}|

4∏

i=1

|{x ∈ kPTi
∩ LTi

: xi = ui}|.

(2.6)

Since we have a bijection between the sets (2.3) and (2.4), we get a bijection between the

lattice points of kPT and kPT ′ . By Lemma 2.5, this bijection can be extended to any two

trivalent trees with the same number of leaves.
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In Chapter 4, we will define the phylogenetic semigroup τ(G) on a graph G as a gen-

eralization of the Jukes-Cantor binary model on trees. Buczyńska proved that similarly to

the trees case, the Hilbert function of τ(G) where G is a trivalent graph depends only on

the combinatorial data of G, the first Betti number and the number of leaves of G [Buc12,

Theorem 3.5]. Without explicitly defining the phylogenetic semigroup on a graph here, we

briefly explain how to use the method in this chapter to give a combinatorial proof of this

more general statement of Buczyńska.

Similarly to Definition 2.4 and Lemma 2.5, Buczyńska defined elementary mutations

and mutation equivalence for trivalent graphs [Buc12, Definition 2.7] and proved that any

two trivalent graphs with the same first Betti number and the same number of leaves are

mutation equivalent [Buc12, Lemma 2.10]. Let G and G′ be trivalent graphs that differ

by an elementary mutation. We can write down formulas for the number of the lattice

points in the kth graded piece of τ(G) and τ(G′) similar to (2.5) and (2.6), respectively, and

establish a bijection between the lattice points of the kth graded piece of τ(G) and τ(G′).

By [Buc12, Lemma 2.10], this bijection can be extended to any two trivalent graphs with

the same first Betti number and the same number of leaves.
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Chapter 3

Hilbert Polynomial of the Kimura

3-Parameter Model

3.1 Introduction

In the last chapter, we gave a combinatorial proof to the theorem by Buczyńska and

Wísniewski saying that the Hilbert polynomial of the algebraic variety associated with

the Jukes-Cantor binary model on a trivalent tree T depends only on the number of leaves

of T [BW07]. In this chapter, we ask if this property of the Hilbert polynomial can be gen-

eralized to more complex group-based models. The content in this chapter was published

as [Kub12].

The most natural generalization would be the Kimura 3-parameter model, which is a

group-based model with the underlying group Z2 × Z2. However, we show that the Hilbert

polynomial of the algebraic variety associated to the Kimura 3-parameter model depends

on the shape of a trivalent tree. We do this by considering two different trees with six

leaves – the caterpillar tree with six leaves and the snowflake tree, see Figure 3.1. This is

the smallest interesting case with more than one trivalent tree with the same number of

leaves.

The Kimura 3-parameter model being the closest model to the Jukes-Cantor binary

model, it is unlikely that the property about Hilbert polynomials would hold for other

models. This hypothesis was further confirmed by Donten-Bury and Micha lek in [DM12].

They showed that the Hilbert polynomials of the algebraic varieties associated with the

group-based models with the groups Z3,Z4,Z5,Z7 and a trivalent tree depend on the shape

of the tree.

In Section 3.2, we recall the construction of the Kimura 3-parameter model. In Sec-

tion 3.3, we show that the Hilbert polynomials of the algebraic varieties associated to the

Kimura 3-parameter model on the caterpillar tree with six leaves and the snowflake tree

have different values when evaluated at three, and hence their Hilbert polynomials are

different. The main idea is to decompose the original trees to smaller trees and use the

toric fiber product introduced by Sullivant in [Sul07]. Finally, we reduce the problem of
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evaluating the Hilbert polynomials of toric varieties to evaluating the Ehrhart polynomials

of the corresponding polytopes. Computations are done with polymake [JG, JMP09] and

Normaliz [BI].

3.2 Kimura 3-Parameter Model

First, we recall the definitions of the toric ideals and the corresponding lattice polytopes of

the Kimura 3-parameter model as in Section 1.4 and [Sul07, Section 3.4]. Then we explain

the toric fiber product structure on these ideals following Section 1.5 and [Sul07, Sections 1

and 3.4].

Let T be a tree with n+1 leaves labeled by 1, . . . , n+1, let the root be at the leaf n+1,

and direct the edges away from the root. A leaf l is a descendant of an edge e if there is a

directed path from e to l. Denote by de(e) the set of all descendants of the edge e.

For a sequence g1, . . . , gn in Z2 × Z2, we define

ge =
∑

i∈de(e)

gi

where e is an edge of T . Let

C[q] = C[qg1,...,gn : gi ∈ Z2 × Z2] and C[t] = C[t
(e)
h : e ∈ E, h ∈ Z2 × Z2],

and consider the ring homomorphism

φT : C[q] → C[t]

qg1,...,gn 7→
∏

e∈E

t(e)ge .

The ideal of the Kimura 3-parameter model on a tree T is IT = ker(φT ). The corre-

sponding lattice polytope is

PT = {x ∈ {0, 1}E×(Z2×Z2) : ∃g1, . . . , gn ∈ G such that, ∀e ∈ E and ∀h ∈ Z2 × Z2,

x
(e)
h = 1 if h =

∑

i∈de(e)

gi and x
(e)
h = 0 otherwise}.

We consider PT with respect to the lattice LT ⊆ ZE×(Z2×Z2) generated by the vertices of

PT .

Remark. There is a slight change in the notation in this chapter. Since there is no ambiguity

about the group, we omit Z2 × Z2. We write φT , IT , PT , LT instead of φZ2×Z2,T , IZ2×Z2,T ,

PZ2×Z2,T , LZ2×Z2,T , respectively.

Since T is an acyclic directed graph, there is an induced partial order on the edges of

T . Namely e < e′ if there is a directed path from e′ to e. Let e be an inner edge of T .

Then e induces a decomposition of T as T+
e ∗ T−

e where T−
e is a subtree of T consisting of
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all edges e′ ∈ T with e′ ≤ e and T+
e consists of all edges e′ ∈ T with e′ 6< e. Thus T+

e and

T−
e overlap in the single edge e. We root T−

e by the tail of e, and keep the root of T+
e at

the original root n+ 1. Without loss of generality, we may assume that the non-root leaves

of T+
e are {1, 2, . . . ,m} and of T−

e are {e,m + 1, . . . , n}.

Denote by IeT+ and IeT− the ideals of the Kimura 3-parameter model on the trees T+
e and

T−
e , and by C[q]+ and C[q]− the ambient polynomial rings, respectively. For each variable

qg in C[q],C[q]+, and C[q]−, let deg(qg) = ege . Let

φIe
T+

,Ie
T−

: C[q] → C[q]+/I
e
T+ ⊗C C[q]−/I

e
T−

be the ring homomorphism such that

qg1,...,gn 7→ qg1,...,gm ⊗ qge,gm+1,...,gn.

We have

deg(qg1,...,gn) = deg(qg1,...,gm) = deg(qge,gm+1,...,gn) = ege ∈ {e(0,0), e(0,1), e(1,0), e(1,1)} =: A.

We recall that the toric fiber product of IeT+ and IeT− is the kernel of φIe
T+

,Ie
T−

IeT+ ×A IeT− = ker(φIe
T+

,Ie
T−

).

By Theorem 1.35, we have

IT = IeT+ ×A IeT− .

This equality will be the basis of our computations in the next section.

3.3 Counting Lattice Points

Proposition 3.1. The Hilbert polynomials of the ideals of the Kimura 3-parameter model

on the caterpillar tree with 6 leaves and the snowflake tree are different.

Proof. Let T be a trivalent tree. In [Mic11], Micha lek shows that the lattice polytope PT

is normal, hence by Theorem 1.19, its Ehrhart polynomial equals the Hilbert polynomial

and the Hilbert function of IT . This allows us to use these notions interchangeably.

1. Since the polytopes of the caterpillar with six leaves and snowflake trees are too large

to compute their lattice points directly, we decompose them into smaller trees like

shown in Figure 3.1.

Henceforth, we use the abbreviations c6, sn, 3l, and 4l for the caterpillar with six

leaves, snowflake, 3-leaf, and trivalent 4-leaf trees, respectively.

For the decomposition of the caterpillar tree with 6 leaves, we define deg(qg) = ege
for qg in K[q]c6 and K[q]4l. Then

Ic6 = Ie4l ×A Ie4l
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e1

e2

=
e1

e2

*

e1

*

e2

e
=

e * e

Figure 3.1: Decompositions of the caterpillar tree with six leaves and the snowflake tree

with A = {e(0,0), e(0,1), e(1,0), e(1,1)}.

For the decomposition of the snowflake tree, we define deg(qg) = ege1 ,ge2 for qg in

K[q]sn and K[q]4l, and deg(qg) = egei with i ∈ {1, 2} for qg in K[q]3l. Then

Isn = (Ie1,e24l ×A Ie13l ) ×A Ie23l

with A = {e(0,0), e(0,1), e(1,0), e(1,1)}. Abusing the notation slightly, the first toric fiber

product corresponds to the decomposition of the 5-leaf tree into a 4-leaf tree and a

3-leaf tree with respect to the edge e1 and the second toric fiber product corresponds

to the decomposition of the snowflake tree into the 5-leaf tree of the first fiber product

and a 3-leaf tree with respect to the edge e2.

2. Denote the multigraded Hilbert function of C[q]/I by hC[q]/I(u) where u ∈ NZ2×Z2 .

By [Sul07, Corollary 2.12] the multigraded Hilbert functions of toric fiber products

behave multiplicatively. Specifically, in the case of decompositions of Step 1, we get

for u, v ∈ NZ2×Z2

hC[q]
c6
/Ic6(u) = hC[q]

4l
/Ie

4l
(u)hC[q]

4l
/Ie

4l
(u),

hC[q]sn/Isn
(u, v) = (hC[q]

4l
/I

e1,e2
4l

(u, v)hC[q]
3l
/I

e1
3l

(u))hC[q]
3l
/I

e2
3l

(v).

For the snowflake tree, we apply the formula twice and take into account that the

edge e2 of the 5-leaf tree belongs to the 4-leaf tree when decomposing the 5-leaf tree.

3. A monomial having multidegree u ∈ NZ2×Z2 has total degree
∑

h∈Z2×Z2
uh. Thus

single graded Hilbert functions can be computed using multigraded Hilbert functions:

hC[q]
c6
/Ic6(k) =

∑

u:
∑

uh=k

hC[q]
c6
/Ic6(u),

hC[q]
sn
/Isn(k) =

∑

u,v:
∑

uh=k,
∑

vh=k

hC[q]
sn
/Isn(u, v).

4. The multigraded Hilbert function hC[q]/IT (u) counts the lattice points in the lattice

LT of the
∑

h∈Z2×Z2
uh dilation of the polytope PT intersected with the hyperplanes
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{xeh = uh}, h ∈ Z2 × Z2. Using Step 2 and Step 3, we get for k ∈ N

ehrPc6
(k) =

∑

u:
∑

uh=k

∣
∣
∣kP4l

⋂

{xeh = uh}
⋂

L4l

∣
∣
∣

∣
∣
∣kP4l

⋂

{xeh = uh}
⋂

L4l

∣
∣
∣ ,

ehrPsn
(k) =

∑

u,v:
∑

uh=k,
∑

vh=k

∣
∣
∣kP4l

⋂

{xe1h = uh}
⋂

{xe2h = vh}
⋂

L4l

∣
∣
∣

·
∣
∣
∣kP3l

⋂

{xe1h = uh}
⋂

L3l

∣
∣
∣

∣
∣
∣kP3l

⋂

{xe2h = vh}
⋂

L3l

∣
∣
∣ .

5. Using polymake and Normaliz, we can compute |3PT ∩{xel = ul}∩LT | for the 3-leaf

and 4-leaf trees. It is important to do the basis transformation before counting the

lattice points, since these programs assume that the lattice is the standard lattice.

Using formulas from Step 4 we get that in the 3rd dilation the polytope of the Kimura

3-parameter model on the caterpillar tree with 6 leaves has 69324800 and the polytope

of the Kimura 3-parameter model on the snowflake tree has 69248000 lattice points.

Hence, their Ehrhart and Hilbert polynomials are different.

Remark. Similar computations show that in the 2nd dilation the polytopes of the Kimura

3-parameter model on the caterpillar tree with 6 leaves and on the snowflake tree have both

396928 lattice points.

Proposition 3.1 does not directly imply that for n + 1 ≥ 7 there exist trivalent trees T ′

and T ′′ with n + 1 leaves such that the Hilbert polynomials of the ideals of the Kimura

3-parameter model on T ′ and T ′′ are different. However, from Proposition 3.1 follows that

the multigraded Hilbert function of C[q]4l/I4l, where the multigrading is induced by the

leaves of the 4-leaf tree, depends on the labeling of the leaves. For the Jukes-Cantor binary

model, this multigraded Hilbert function is independent of the labeling of the leaves [SX10,

Corollary 7.12], which explains the invariance of the Hilbert polynomial.
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Chapter 4

Degrees of Minimal Generators of

Phylogenetic Semigroups

4.1 Introduction

Results in this chapter are a part of joint work with Weronika Buczyńska, Jarek Buczyński,

and Mateusz Micha lek [BBKM11]. An upper bound for the caterpillar graphs and examples

for the lower bound were worked out independently by the author of this dissertation. Expo-

sition was improved and the definition of the phylogenetic semigroup on an arbitrary graph

were worked out together with the other authors of [BBKM11]. The results of [BBKM11]

about the upper bound for trivalent graphs that were worked out by the other authors of

[BBKM11] appeared in the dissertation of Mateusz Micha lek [Mic12] and are not included

here.

Let G be a graph. We study a subset τ(G) of the set of all labelings of the edges of

G by integers. The set τ(G) has a natural structure of a graded semigroup with edge-wise

addition. We call it the phylogenetic semigroup on G, since the conditions on the labels

come from phylogenetics. The precise definition can be found in Section 4.2.

The phylogenetic semigroup on a trivalent graph was defined by Buczyńska [Buc12] as

a generalization of the affine semigroup of the Jukes-Cantor binary model on a trivalent

tree. In [BBKM11], we further generalized the definition of the phylogenetic semigroup

to arbitrary graphs. This definition agrees with the Buczyńska’s definition for trivalent

graphs.

Besides phylogenetic algebraic geometry, phylogenetic semigroups appear in several

other contexts. In [JW92], Jeffrey and Weitsman quantized the moduli space of flat SU(2)

connections on a two-dimensional surface of genus g using a real polarization. The di-

mension of the quantization is counted by integral fibers of the polarization, which are in

one-to-one correspondence with the labelings of a trivalent graph G with first Betti number

g that satisfy the quantum Clebsch-Gordan conditions. These labelings are exactly the

elements of the phylogenetic semigroup on G. Moreover, the number of the labelings that

satisfy the quantum Clebsch-Gordan conditions matches the Verlinde formula for the SU(2)
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Wess-Zumino-Witten model in the quantum field theory [Ver88].

In more recent work, Sturmfels and Xu showed that the projective coordinate ring of

the Jukes-Cantor binary model is a sagbi degeneration of the Cox ring of the blow-up of

Pn+3 at n general points [SX10]. Manon generalized their construction showing that the

algebra of SL2(C) conformal blocks for a stable curve of genus g with n marked points flatly

degenerates to the semigroup algebra of the phylogenetic semigroup on a graph with first

Betti number g with n leaves [Man09]. The genus zero case in Manon’s construction is the

setting of Sturmfels and Xu.

Let G be any graph with first Betti number g. In [BBKM11], we studied the maximal

degree of the minimal generating set of τ(G). It was previously known that, for g = 0,

the phylogenetic semigroup τ(G) is generated in degree one [BW07, DM12]. For g = 1,

Buczyńska showed that any minimal generator of τ(G) has degree at most two [Buc12].

The first main result of [BBKM11] gives an upper bound for the maximal degree of the

minimal generating set of any phylogenetic semigroup.

Theorem 4.1. Let G be a graph with first Betti number g. Any minimal generator of τ(G)

has degree at most g + 1.

This result is not presented in this dissertation. For trivalent graphs, it appeared in the

dissertation [Mic12].

We show that, for any g ∈ N, there exists a graph G with first Betti number g such that

the maximal degree of the minimal generating set of its phylogenetic semigroup is equal

to 2⌊g2⌋ + 1, i.e it is g + 1 for g even and g for g odd. Specifically, G can be taken as the

g-caterpillar graph. This implies that g + 1 is the sharp upper bound for g even. This is

the second main result of [BBKM11].

It is left open if the sharp upper bound for g ≥ 5 odd is g or g + 1. For g ∈ {1, 3}, the

phylogenetic semigroup on the g-caterpillar graph has a minimal generator of degree g + 1.

For odd g ≥ 5, we only know that the phylogenetic semigroup on the g-caterpillar graph

does not have any minimal generators of degree g + 1, unlike to the even case.

In Section 4.2, we define the phylogenetic semigroup on a graph G. In Section 4.3, we

construct a degree 2⌊g2⌋ + 1 indecomposable labeling of a graph with first Betti number g,

and in the last section of this chapter we study labelings of the g-caterpillar graph for g

odd.

4.2 Phylogenetic Semigroups

In this section, we define the phylogenetic semigroup τ(G) on a graph G. We start by

recalling the definition of the lattice polytope PT associated with the Jukes-Cantor binary

model on a tree T . The phylogenetic semigroup τ(T ) on a tree T is the cone over PT ×

{1} intersected with a lattice. The phylogenetic semigroup τ(G) on a graph G is defined

using the definition for trees. At the end of this section, we study some properties of the

phylogenetic semigroups on trivalent trees.
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We recall that the lattice polytope associated with the Jukes-Cantor binary model on

a tree T is

PT = conv{x ∈ LT : xe ∈ {0, 1} for every e ∈ E}

with respect to the lattice

LT = {x ∈ ZE :
∑

v∈e

xe ∈ 2Z for every v ∈ I}.

Define the associated graded lattice by

Lgr
T = LT ⊕ Z

together with the degree map

deg : Lgr
T = LT ⊕ Z → Z

given by the projection on the last summand.

Definition 4.2. The phylogenetic semigroup τ(T ) on T is

τ(T ) = cone(PT × {1}) ∩ Lgr
T .

Definition 4.3. The First Betti number of a graph is the minimal number of cuts that

would make the graph into a tree.

Remark. Given the connection between phylogenetic semigroups and conformal block al-

gebras, it is tempting to say genus of a graph instead of the first Betti number. However,

this is inconsistent with the graph theory notation, where genus of a graph is the smallest

genus of a surface such that the graph can be embedded into that surface.

To a given graph G with first Betti number g we associate a tree T with g distinguished

pairs of leaf edges with the aim of defining τ(G) based on τ(T ). This procedure can be

described inductively on g. If g = 0, then the graph is a tree with no distinguished pairs

of leaf edges. For g > 0, we choose a cycle edge e. We divide e into two edges e and e,

adding two vertices l and l of valency 1. The edges e and e form a distinguished pair of leaf

edges. This procedure decreases the first Betti number by one and increases the number of

distinguished pairs by one. Usually the resulting tree with distinguished pairs of leaf edges

is not unique. However, a tree with distinguished pairs of leaf edges encodes precisely one

graph and the following definition does not depend on the resulting tree.

Definition 4.4. Let G be a graph. Let T be an associated tree with a set of distinguished

pairs of leaves {(ei, ei)}. We define the phylogenetic semigroup on G as

τ(G) = τ(T ) ∩
⋂

i

(xei = xei).

In other words, τ(G) consists of those labelings of τ(T ) where the label on ei is identical to

the one on ei, and thus the labeling of T gives a labeling of G. Similarly, define the lattice

Lgr
G = Lgr

T ∩
⋂

i

(xei = xei)

together with the degree map induced by the degree map of Lgr
T .
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Remark. If we knew inequality descriptions of the phylogenetic semigroups on all claw

trees, then it would be easy to define the phylogenetic semigroup on any graph using these

inequality descriptions. Unfortunately, inequality descriptions of phylogenetic semigroups

are not known for general claw trees, and we have to use a point description to define the

phylogenetic semigroup on a graph. An inequality description of the phylogenetic semigroup

on a trivalent graph is given in Lemma 4.6.

By Gordan’s Lemma, the phylogenetic semigroup τ(G) has a unique minimal generating

set. We call the elements of the minimal generating set minimal generators, or sometimes

also indecomposable elements of τ(G).

Finally, we study some properties of the phylogenetic semigroups on trivalent graphs

that we will need in the next sections.

Notation. Let G be a trivalent graph and v be an inner vertex of G. Let {e1, e2, e3} be the

edges of and iv : →֒ G be a map that is locally an embedding and sends the central

vertex of to v. For ω ∈ Lgr
G , we denote

av(ω) := ωiv(e1), bv(ω) := ωiv(e2), cv(ω) := ωiv(e3).

In other words, av, bv , cv measure the coefficients of ω at the edges incident to v.

Definition 4.5. The degree of ω ∈ Lgr
G at an inner vertex v ∈ I is

degv(ω) :=
1

2

(
av(ω) + bv(ω) + cv(ω)

)
.

Lemma 4.6 ([Buc12], Definition 2.18 and Lemma 2.23). For a trivalent graph G, the

phylogenetic semigroup τ(G) on G is the set of elements ω satisfying the following conditions

[♥♥]. parity condition: ω ∈ Lgr
G ,

[+]. non-negativity condition: ωe ≥ 0 for any e ∈ E,

[△]. triangle inequalities: |av(ω) − bv(ω)| ≤ cv(ω) ≤ av(ω) + bv(ω) for each inner vertex

v ∈ I,

[°]. degree inequalities: deg(ω) ≥ degv(ω) for any v ∈ I.

The triangle inequalities [△] are symmetric and do not depend on the embedding iv.

Remark. If every connected component of G contains at least one inner vertex, then the

inequalities above imply deg(ω) ≥ ωe for all edges. However, if G contains connected

components that contain only a single edge e, then the inequality deg(ω) ≥ ωe should be

included in Lemma 4.6.

Finally, we prove that trivalent graphs have the highest degree minimal generating sets

among all graphs with the same first Betti number. This knowledge is helpful for the search

of graphs with high degree indecomposable elements as we can limit ourselves to trivalent

graphs.
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Lemma 4.7. Let G be a graph with first Betti number g. Assume that the maximal degree

of the minimal generating set of τ(G) is n. Then there exists a trivalent graph G′ with first

Betti number g such that the maximal degree of the minimal generating set of τ(G′) is at

least n.

Proof. We construct G′ from G. Choose an inner vertex v of G that is not trivalent.

Replace v by v′ and v′′ together with a new edge between them, let two edges incident to

v be incident to v′ and the rest of the edges incident to v be incident to v′′. After a finite

number of replacements we get a trivalent graph G′, because valency(v′) < valency(v) and

valency(v′′) < valency(v).

Now consider a tree T with g distinguished pairs of leaf edges associated to G that

is attained by dividing edges e1, e2, . . . , eg into two. Dividing exactly the same edges

e1, e2, . . . , eg into two in G′ gives a tree T ′ with g distinguished pairs of leaf edges as-

sociated to G′. As τ(T ) and τ(T ′) are normal [DM12, Proposition 3.12], the semigroup

τ(T ) is a coordinate projection of the semigroup τ(T ′) that forgets coordinates correspond-

ing to new edges. Hence, the semigroup τ(G) is a coordinate projection of the semigroup

τ(G′) and the projections of the minimal generators of τ(G′) generate τ(G).

4.3 Sharpness of the Upper Bound for Even g

In this section, we show that if g is even then the bound g + 1 is sharp for the caterpillar

graph with g loops.

Definition 4.8. The trivalent graph obtained from the caterpillar tree with g+1 leaves by

attaching a loop to all but one leaf (the leftmost one) as illustrated in Figure 4.1 is called

the g-caterpillar graph.

Figure 4.1: The g-caterpillar graph

Lemma 4.9. Let G be the g-caterpillar graph and ω ∈ Lgr
G . Then ωe is even on every edge

e other than loops.

Proof. The statement follows directly from the parity condition for the edges incident to

loops, and thus for all edges.

The tripod contains three non-empty paths, each consisting of two edges. Denote them

by

x := e2 + e3, y := e1 + e3, z := e1 + e2

where {e1, e2, e3} are edges of the tripod. Together with the empty path, they correspond

to the minimal generators of the phylogenetic semigroup τ( ). Since τ( ) is normal, every

35



element of the semigroup can be written as a sum of paths x, y, z, and the empty path.

Moreover, since the minimal generators of τ( ) are vertices of a simplex, this decomposition

is unique.

Now let G be any trivalent graph. Similarly to the tripod case, at every inner vertex

v of G, we can write an element of τ(G) as a unique sum of paths x, y, z, and the empty

path. In the case of the g-caterpillar graph, we denote the local paths at an inner vertex v

on the horizontal line straight, left, and right paths, as shown in Figure 4.2.

straight

left right

av

cv

o

bv

Figure 4.2: Notation for local paths at a vertex of the g-caterpillar graph

Corollary 4.10. Let G be a g-caterpillar graph, ω ∈ τ(G), and v a vertex not on a loop.

Then

� if degv ω is even, then the number of straight (left, right) paths at v is even,

� if degv ω is odd, then the number of straight (left, right) paths at v is odd.

In particular, degv(ω) 6= 1.

Now we are ready to prove that for g even the g-caterpillar graph has degree g + 1

indecomposable elements.

Example 4.11. Suppose g = 2k, and let G be the g-caterpillar graph. The element ω

defined in Figure 4.3 is indecomposable.

2k 2 2k − 2 4 2 2k

2k 2k 2k 2k

k k k k

k

Figure 4.3: The indecomposable element ω of degree g + 1

Proof. We begin the proof by explaining the local decomposition of ω. Starting from the

left-most inner vertex of the caterpillar tree we have

(1) 2k − 1 left, 1 right, 1 straight paths
2k − 2
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(2) 2k − 2 right, 2 left paths
2k − 2

(3) 2k − 3 left, 3 right, 1 straight paths
2k − 2

...
...

(2k − 1) 1 left, 2k − 1 right, 1 straight paths
2k − 2

2k − 2

Suppose for a contradiction that ω is decomposable as ω′ + ω′′. Since the degree of ω

is odd, one of the two parts has even degree. Assume ω′ has even degree deg(ω′) = 2i with

i > 0.

Every second vertex v on the horizontal line has a single straight line in the local

decomposition of ω. Moreover at such v the degree is attained degv ω = degω. Thus

degv ω
′ = degω′ and degv ω

′′ = degω′′ as well. By Corollary 4.10, the local decomposition

of ω′′ at v consists of the single straight path and odd number of left paths and odd number

of right paths, whereas the local decomposition of ω′ at v consists of even number of left

paths and even number of right paths. This means ω′ must have 2i left paths at the left-

most inner vertex on the horizontal line of G. At the next inner vertex on the horizontal

line, ω′ has 2i right paths by Example 4.9, and so on. This is a contradiction, as at some

inner vertex on the horizontal line ω has less than 2i left paths.

4.4 A Lower Bound for Odd g

Example 4.12. Suppose g = 2k + 1, and let G be the g-caterpillar graph. By extending

the labeling from Example 4.11 to the extra loop of the (g + 1)-caterpillar, we get a degree

g indecomposable labeling of G.

Hence, for g odd, there exists a graph with first Betti number g such that its phylogenetic

semigroup has a minimal generator of degree g. We will show that, for g odd, the maximal

degree of the minimal generating set of the phylogenetic semigroup on the g-caterpillar

graph is g, unlike to the even case. The question whether, for g odd, there exists a graph

with first Betti number g and this maximal degree equal to g + 1 is left open.
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Lemma 4.13. Let G be the g-caterpillar graph. Let ω ∈ τ(G) be an element of even degree

at least 6. Then ω can be decomposed into degree 2 and deg(ω) − 2 elements.1

Proof. For this proof, we fix the following notation. At each vertex v on the horizontal

line of the g-caterpillar, we choose an embedding of the tripod so that av, bv, and cv are

arranged as in Figure 4.2, so cv is the value on the vertical edge, av on the left one, bv on

the right one.

Let d := deg(ω) be the degree of ω. We will define a degree 2 element ω′, so that

ω = ω′ + ω′′ is a decomposition in τ(G). In our construction we use local paths. This

assures that the resulting ω′ and ω′′ fulfill the triangle inequalities [△] of τ(G). To assure

the degree inequalities [°], we require that ω′ satisfies the following at each inner vertex v

d− 2 ≥ degv(ω′′) = degv(ω) − degv(ω′). (4.1)

Note that if degv(ω′) = 2, or equivalently, if ω′ is constructed using two local paths at v,

then (4.1) is automatically fulfilled.

First, we define the labels of ω′ on the caterpillar tree, ignoring the labels on the loops

for a while. We define them inductively from left to right using local paths, in such a way

that the following condition holds for every inner vertex v of the caterpillar tree

bv(ω′) =







0 if bv(ω) < d
2 ,

2 if bv(ω) > d
2 ,

0 or 2 otherwise.

(4.2)

First, we define ω′ for the left-most edge e

ω′
e =

{

0 if ωe ≤
d
2 ,

2 otherwise.

We need to prove that at every step there is enough of local paths in ω to fulfill condi-

tions (4.1) and (4.2). There are six cases depending on the value of ω′ on the previous edge

and the value of ω on the current one.

1. If av(ω′) = 2 and bv(ω) > d/2, then we have to prove that ω has at least two straight

paths at v, since we need bv(ω′) = 2. The condition (4.2) gives av(ω) ≥ d/2, and

#straight =
av(ω) + bv(ω) − cv(ω)

2
>

d

2
−

cv(ω)

2
> 0,

where the last inequality holds because of

2d ≥ av(ω) + bv(ω) + cv(ω) >
d

2
+

d

2
+ cv(ω) = d + cv(ω).

As d and cv(ω) are both even, we conclude that ω has at least two straight paths at

v.
1The improved version of the proof that we present here is in large extent due to Weronika Buczyńska

and Jarek Buczyński.

38



2. If av(ω′) = 2 and bv(ω) = d/2, then we have to prove that ω has either at least

two straight paths or at least two left paths at v, since we need either bv(ω′) = 2 or

bv(ω′) = 0. The condition (4.2) gives av(ω) ≥ d/2, and

#straight + #left = av(ω) ≥
d

2
≥ 3.

3. If av(ω′) = 2 and bv(ω) < d/2, then we have to prove that ω has at least two left

paths at v, since we need bv(ω′) = 0. The condition (4.2) gives av(ω) ≥ d/2, and thus

av(ω) − bv(ω) > 0. By the triangle inequalities [△], we have

#left =
cv(ω) + av(ω) − bv(ω)

2
≥

av(ω) − bv(ω)

2
+

|av(ω) − bv(ω)|

2

= av(ω) − bv(ω) ≥ 1

As av(ω) and bv(ω) are both even, we conclude that ω has at least two left paths at

v.

4. If av(ω′) = 0 and bv(ω) > d/2, then we have to prove that ω has at least two right

paths at v, since we need bv(ω′) = 2. The condition (4.2) gives av(ω) ≤ d/2, and thus

bv(ω) − av(ω) > 0. Again, by the triangle inequalities [△] we have

#right =
cv(ω) + bv(ω) − av(ω)

2
≥

bv(ω) − av(ω)

2
+

|bv(ω) − av(ω)|

2

= bv(ω) − av(ω) ≥ 1

5. If av(ω′) = 0 and bv(ω) = d/2, we have to prove that either degv(ω) ≤ d− 2 or ω has

two right paths at v, since we need either bv(ω′) = 0 or bv(ω′) = 2. If degv(ω) ≥ d−1,

using the condition (4.2) gives

#right =
bv(ω) + cv(ω) − av(ω)

2
= degv(ω) − av(ω) ≥ (d− 1) −

d

2
≥ 2.

6. If av(ω′) = 0 and bv(ω) < d/2, then we have to prove that degv(ω) ≤ d− 2, since we

need bv(ω′) = 0. The condition (4.2) gives av(ω) ≤ d/2, and thus av(ω)+bv(ω) ≤ d−1.

As av(ω) and bv(ω) are both even, we even have av(ω) + bv(ω) ≤ d − 2. Using this

and the triangle inequalities [△], we get the desired inequality:

2 degv(ω) = av(ω) + bv(ω) + cv(ω) ≤ d− 2 + cv(ω) ≤ d− 2 + av(ω) + bv(ω) ≤ 2d− 4.

Note that we use d ≥ 6 only in cases with b = d/2, i.e., cases 2 and 5.

It remains to suitably define the labels of ω′ on the loops. Fix a loop o. In the local

decomposition of ω at the vertex vo some of the local paths come in pairs: There are ωeo/2

loops with 2 on the adjacent edge and 1 on the loop; there are (ωo − ωeo/2) single loops

with 0 on the adjacent edge and 1 on the loop.

If ω′
eo = 2 then ωeo ≥ 2, and there is at least one loop with 2 on the adjacent edge in

the local decomposition of ω. Set ω′
o = 1.
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Otherwise ω′
eo = 0 by the construction above. This implies together with the Remark 4.2

that ωeo ≤ d− 2. Hence, the number of single loops

ωo − ωeo/2 = degvo(ω) − ωeo ≥ degvo(ω) − d + 2,

and we define

ω′
o = max{degvo(ω) − d + 2, 0}.

Finally, we check that the condition (4.1) is fulfilled.

degvo(ω) − degvo(ω′) ≤ degvo(ω) − (degvo(ω) − d + 2) ≤ d− 2.

This completes the proof.
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Chapter 5

Low Degree Minimal Generators of

Phylogenetic Semigroups

5.1 Introduction

This chapter continues the study of phylogenetic semigroups started in the previous chap-

ter, where we studied the maximal degrees of the minimal generators of phylogenetic semi-

groups. The aim of this chapter is to explicitly characterize the minimal generators of low

degree of phylogenetic semigroups.

The minimal generators of low degree of phylogenetic semigroups have been previously

studied for trees and graphs with first Betti number 1. The phylogenetic semigroups on

trees are generated by degree one labelings, known as networks [BW07, DM12]. Buczyńska

studied the minimal generators of the phylogenetic semigroups on the trivalent graphs with

first Betti number 1. She proved that any minimal generator of the phylogenetic semigroup

on a trivalent graph with first Betti number 1 has degree at most two, and explicitly

described the minimal generating sets [Buc12].

In this chapter, we extend this result from trivalent graphs to general graphs: We

describe the minimal generating set of the phylogenetic semigroup on any graph with first

Betti number g ≤ 1. Moreover, we characterize the minimal generators of degree two of

the phylogenetic semigroups on all trivalent graphs with first Betti number g > 1.

We also specify the bound on the maximal degree of the minimal generating set for

all graphs with first Betti number 2. By [BBKM11], the maximal degree of the minimal

generating set of the phylogenetic semigroup on a graph with first Betti number 2 is at most

three. We explicitly characterize when the maximal degree three is attained, and when the

maximal degree is equal to two or one. If the degree three is attained, we describe the

minimal generators of degree three.

In the last section of this chapter, we list the maximal degrees of the minimal generating

sets of the phylogenetic semigroups on some graphs with first Betti number 3, 4, or 5.

We speculate that the maximal degree depends on the separateness of the cycles of the

graph. Having low maximal degree is especially interesting from the perspective of SL2(C)
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conformal block algebras as this ensures a low maximal degree for the minimal generators

of these algebras, see [Man12b].

In Section 5.2, we give a shortened proof of a Buczyńska’s theorem about the minimal

generators of the phylogenetic semigroups on the trivalent graphs with first Betti number 1,

and we generalize the statement to general graphs with first Betti number 1. In Section 5.3,

we characterize the minimal generators of degree two for any trivalent graph. In Section 5.4,

we study the explicit maximal degree of the minimal generating set of the phylogenetic

semigroup on a graph with first Betti number 2, and in some cases describe the minimal

generating sets of the phylogenetic semigroups on graphs with first Betti number 2. In

Section 5.5, we complete the description of the minimal generating sets of the phylogenetic

semigroups on the trivalent graphs with first Betti number 2. In the last section, we list

examples of these maximal degrees for graphs with first Betti numbers 3,4, and 5.

5.2 Graphs with First Betti Number 1

In this section, we study the minimal generating sets of the phylogenetic semigroups on the

graphs with first Betti number 1. Buczyńska did this for trivalent graphs [Buc12]. We give

a shortened proof of her result, and as a corollary, we describe the minimal generating set

of the phylogenetic semigroup on any graph with first Betti number 1.

Definition 5.1. Let G be a graph. A path in G is a sequence of unrepeated edges which

connect a sequence of vertices. Moreover, we require the first and the last vertex to be

either both leaves or equal. In the latter case, a path is called a cycle. A network is a

disjoint union of paths. A cycle edge is an edge on a cycle of G. A cycle leg is an edge

incident to a cycle edge, but is not a cycle edge.

Let G be a graph and e an inner edge of G. Let e′ and e′′ be new leaf edges obtained

by cutting G at e, as illustrated in Figure 5.1. Then ω ∈ τ(G) gives an element ω ∈ τ(Ge):

ωe =

{

ωe if e /∈ {e′, e′′},

ωe if e ∈ {e′, e′′}.

On the contrary, given ω ∈ τ(Ge), it gives an element ω ∈ τ(G) if and only if ωe′ = ωe′′ :

ωe =

{

ωe if e 6= e,

ωe′ if e = e.

G

e e′ , e′′

Figure 5.1: A graph Ge obtained by cutting an inner edge e of G

In [Buc12], a polygon graph G was defined as a graph with 2k edges, k of which form

the only cycle of G and the remaining k edges are cycle legs. The use of polygon graphs
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simplifies the study of the phylogenetic semigroups on the trivalent graphs with first Betti

number 1. We generalize this definition to be able to simplify the study of the phylogenetic

semigroups on any graph.

Definition 5.2. A graph G with first Betti number g ≥ 1 is called a multiple polygon graph

if for no edge e we can write Ge = G′ ⊔G′′ with G′ or G′′ a tree with more than one edge,

see Figure 5.2 for examples. A multiple polygon graph is a polygon graph if it has first Betti

number 1.

Lemma 5.3. Given a graph G with first Betti number g ≥ 1, there exist non-cycle inner

edges e1, . . . , ek of G such that Ge1,...,ek = G0⊔G1⊔ . . .⊔Gk where G0 is a multiple polygon

graph and G1, . . . , Gk are trees.

Proof. Choose all non-cycle edges e such that we can write Ge = G′ ⊔ G′′ with G′′ a tree

with more than one edge and e maximal with this property, i.e. there is an edge e incident

to e such that we cannot write Ge = G′ ⊔G′′ with G′ or G′′ a tree.

Lemma 5.4. Let G be a graph and ω ∈ τ(G). Let e be a non-cycle inner edge such

that Ge = G′ ⊔ G′′ with G′′ a tree. Then any decomposition of ω|G′ ∈ τ(G′) lifts to a

decomposition of ω ∈ τ(G).

Proof. This lemma is stated for trivalent graphs in [Buc12, Lemma 2.31]. Since τ(T ) is

normal for any tree T [DM12, Proposition 18], then the proof works for the general case

exactly the same way as it does for the trivalent case.

Corollary 5.5. Let G be a graph and ω ∈ τ(G). Let e1, . . . , ek be non-cycle inner edges

such that Ge1,...,ek = G0⊔G1⊔ . . .⊔Gk where G0 is a multiple polygon graph and G1, . . . , Gk

are trees. Then any decomposition of ω|G0
∈ τ(G0) lifts to a decomposition of ω ∈ τ(G).

Proof. We can use Lemma 5.4 iteratively.

Networks can be seen as degree one elements of τ(G). We define ω corresponding to a

network Γ in the following way:

ωe =

{

1 if e belongs to Γ,

0 otherwise.

It follows from the definition of a network that the parity condition is fulfilled for ω at

every inner vertex of G. Hence ω ∈ τ(G). We will often use the notion network for the

corresponding labeling ω ∈ τ(G).

It has been shown for various classes of graphs that networks are in one-to-one corre-

spondence with the degree one elements of a phylogenetic semigroup [BW07, Lemma 3.3],

[Buc12, Lemma 2.26]. For an arbitrary tree, this was stated in [BBKM11, Section 2], but

no proof was given. We did not find proofs for arbitrary trees or graphs in the literature,

and therefore will present them here.
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Lemma 5.6. Let T be a tree. There is a one-to-one correspondence between the networks

and the degree one elements of τ(T ).

Proof. We will prove the lemma by induction on the number of inner vertices of T .

Base case: The statement of the lemma clearly holds for claw trees.

Induction step: Let T be a tree with n > 1 inner vertices and ω ∈ τ(T ) a degree one

labeling. If T has more than one connected component, then by induction ω restricted to

any connected component is a disjoint union of paths. Hence, the labeling ω is a disjoint

union of paths.

If T has one connected component, let e be an inner edge, e1, e2 new leaf edges obtained

by cutting T at e and write T e = T1 ⊔ T2. Then ω restricted to either tree is a disjoint

union of paths. If ωe = 0, then ω is the disjoint union of exactly the same paths. If ωe = 1,

then the path of T1 containing e1 and the path of T2 containing e2 are combined to one

path of T containing e. Hence, the labeling ω is a disjoint union of paths.

Lemma 5.7. Let G be a graph. There is a one-to-one correspondence between the networks

and the degree one elements of τ(G).

Proof. We will prove the lemma by induction on the first Betti number g of G.

Base case: The statement of the lemma holds for trees by Lemma 5.6.

Induction step: Let G be a graph with first Betti number g > 1 and ω ∈ τ(G) a degree one

labeling. Let e be a cycle edge of G and e1, e2 new leaf edges obtained by cutting G at e.

The graph Ge has first Betti number g− 1. Then ω gives ω ∈ Ge that is a disjoint union of

paths containing both e1, e2 or neither of them. If ωe = 0, then ω is the disjoint union of

exactly the same paths. If ωe = 1, then there are two possibilities. Either there is a path in

ω with the first edge e1 and the last edge e2 which lifts to a cycle in ω. Or there is a path

in ω with the first edge e′ and the last edge e1, and another path in ω with the first edge

e2 and the last edge e′′ where e′, e′′ are leaf edges. These paths in ω lift to a single path in

ω with the first edge e and the last edge e′ in G.

Corollary 5.8. Let G be a graph. All networks are included in the minimal generating set

of τ(G).

Proof. For any graded affine semigroup NA, all minimal generators of degree one are in-

cluded in the minimal generating set of NA.

Theorem 5.9 ([Buc12], Theorem 2.29). Let G be a trivalent graph with first Betti number

1 and ω ∈ τ(G). Then ω is a minimal generator of τ(G) if and only if it satisfies one of

the following conditions:

� ω is a network, or

� ω has degree two, and satisfies the following three conditions:

(i) ωe = 1 for all cycle edges e,

(ii) ωe = 2 for an odd number of cycle legs,
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(iii) ωe = 0 for the remaining cycle legs.

We give a shortened proof of this theorem. The following lemma will be an important

part of it.

Lemma 5.10. Let G be a graph with first Betti number 1. Let ω ∈ τ(G) be of degree d. If

there is a cycle edge e with ωe = 0 or ωe = d, then ω decomposes as a sum of degree one

elements.

Proof. Let e be a cycle edge and e1, e2 new leaf edges obtained by cutting G at e. Notice

that Ge is a tree. Then ω gives ω ∈ τ(Ge) that decomposes into degree one elements

ω = ω1 + . . .+ωd. Since (ωi)e1 = (ωi)e2 for all i, the decomposition ω = ω1 + . . .+ωd gives

a decomposition ω = ω1 + . . . + ωd of ω ∈ τ(G).

Proof of Theorem 5.9. By Corollary 5.5 we can assume that G is a trivalent polygon graph.

First, we prove that any minimal generator of τ(G) has degree at most two. Let ω ∈ τ(G)

be of degree d. Let e be a cycle edge and e1, e2 new leaf edges obtained by cutting G at e.

Then ω gives ω ∈ τ(Ge) that decomposes as a sum of degree one elements ω = ω1+ . . .+ωd.

If (ωi)e1 = (ωi)e2 then ωi gives an element ωi ∈ τ(G). Otherwise there exists j such that

(ωi)e1 = (ωj)e2 and (ωj)e1 = (ωi)e2 , because ωe1 = ωe2 . Thus ωi + ωj gives a degree two

element ωi + ωj ∈ τ(G).

The degree one elements of τ(G) are networks by Corollary 5.7. By Lemma 5.10, all

degree two indecomposable elements ω have ωe = 1 on all cycle edges e. Since G is a

trivalent graph, we have ωe ∈ {0, 2} for all cycle legs because of the parity condition.

Assume ωe = 2 for an even number of cycle legs e1, . . . e2k in clockwise order. Denote by

Pi the path starting at ei and ending at ei+1 (at e0 for i = 2k). Then ω decomposes as the

sum of networks P1∪P3∪ . . .∪P2k−1 and P2∪P4∪ . . .∪P2k. Hence, for ω indecomposable,

ωe = 2 for an odd number of cycle legs.

Conversely, assume that ω ∈ τ(G) has degree two and fulfills (i), (ii), (iii). Suppose

ω = ω1 +ω2 where ω1, ω2 are networks. For all cycle legs e with ωe = 2, we have (ωi)e = 1,

since (ωi)e ≤ 1 for all edges e. Hence, we have (ωi)e = 1 for odd number of leaves of G.

But this is contradiction to the fact that ωi is a network.

Remark. We know from [Buc12, BBKM11] that a minimal generator of the phylogenetic

semigroup on a graph with first Betti number 1 has degree at most two. We showed this

above to give a simple and self-containing proof.

Corollary 5.11. Let G be a graph with first Betti number 1 and ω ∈ τ(G). Then ω is a

minimal generator of τ(G) if and only if it satisfies one of the following conditions:

� ω is a network, or

� ω has degree two, and satisfies the following three conditions:

(i) ωe = 1 for all cycle edges e,

(ii) ωe = 2 for an odd number of cycle legs,
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(iii) ωe = 0 for the remaining cycle legs.

Proof. Let G′ be a trivalent graph constructed from G in the following way: Replace all

vertices v with valency higher than three by two new vertices v′ and v′′ together with a

new edge between them, let two edges incident to v be incident to v′ and the rest of the

edges incident to v be incident to v′′. Moreover, if v is on the cycle, let one cycle edge

incident to v be incident to v′ and let the other cycle edge incident to v be incident to v′′.

This assures that we do not add any cycle legs. After a finite number of replacements we

get a trivalent graph G′. By the proof of Lemma 4.7, τ(G) is the coordinate projection of

τ(G′) that forgets coordinates corresponding to new edges. In particular, if ω′ ∈ τ(G′) is

decomposable, then its projection in τ(G) is also decomposable.

By [BBKM11], any minimal generator of τ(G) has degree at most two. Degree one

elements are networks. We are left with describing the indecomposable elements of degree

two of τ(G). A degree two indecomposable element ω ∈ τ(G) is the coordinate projection

of a degree two indecomposable element of τ(G′). Since all cycle legs of G′ are also cycle

legs of G, then by Theorem 5.9 the conditions (i), (ii), (iii) are fulfilled for ω.

Conversely, assume that the conditions (i), (ii), (iii) are fulfilled. Suppose ω = ω1 + ω2

where ω1, ω2 are networks. For all cycle legs e with ωe = 2, we have (ωi)e = 1, since

(ωi)e ≤ 1 for all edges e. Hence, we have (ωi)e = 1 for odd number of leaves of G′. But this

is a contradiction to the fact that ωi is a network.

5.3 Minimal Generators of Degree Two

In this section, we describe degree two indecomposable labelings for any trivalent graph G.

Lemma 5.12. Let G be any graph and ω ∈ τ(G) a degree two labeling. If there exists

a cycle G′ of G such that ωe = 1 for all cycle edges e ∈ G′, ωe = 2 for an odd number

cycle legs e of G′ and ωe = 0 for the remaining cycle legs e ∈ G′, then the labeling ω is

indecomposable.

Proof. If ω decomposes, then a decomposition of ω restricts to a decomposition of ω|G′ ∈

τ(G′) where G′ is a cycle together with its cycle legs. Thus the statement follows from

Corollary 5.11.

Lemma 5.13. Let G be a trivalent graph and ω ∈ τ(G) a degree two labeling. The labeling

ω is indecomposable if and only if there exists a cycle G′ of G together with its cycle legs

such that ω|G′ ∈ τ(G′) is indecomposable.

Proof. One direction follows from Lemma 5.12. We show by induction on the first Betti

number of G that if ω ∈ τ(G) is a degree two indecomposable labeling then there exists a

cycle G′ together with its cycle legs such that ω|G′ is a degree two indecomposable labeling.

Base case: If the first Betti number of G is 1, then the statement follows from Theo-

rem 5.9.

Induction step: Assume that the first Betti number of G is g > 1. If more than one

connected component of G contains a cycle, then there exists a connected component C of
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G containing a cycle such that ω|C ∈ τ(C) is an indecomposable element of degree two.

Since the first Betti number of C is less than g, we know by induction that there exists

a cycle G′ of C together with its cycle legs such that ω|G′ ∈ τ(G′) is an indecomposable

element of degree two.

Otherwise all cycles of G live in the same connected component of G. If ωe = 1 for all

cycle edges e, then by the parity condition ωe ∈ {0, 2} for all cycle legs e. In particular,

none of the cycle legs is simultaneously a cycle edge and there exists a cycle leg e that

separates some cycles of G. Let e1, e2 be the new leaf edges obtained by cutting G at e and

write Ge = G1 ⊔ G2. Then ω gives ω1 ∈ τ(G1) and ω2 ∈ τ(G2) with at least one of them

indecomposable, otherwise one could lift these decompositions to a decomposition of ω. By

induction, for i with ωi indecomposable, there exists a cycle G′ of Gi together with its cycle

legs such that ωi|G′ ∈ τ(G′) is indecomposable. Thus ω|G′ ∈ τ(G′) is indecomposable.

If there exists a cycle edge e with ωe ∈ {0, 2}, then let e1 and e2 be new leaf edges

obtained by cutting G at e. The labeling ω ∈ τ(G) gives a labeling ω ∈ τ(Ge) that is

indecomposable. Otherwise one could lift a decomposition ω = ω1 +ω2 to a decomposition

ω = ω1 +ω2, because (ωi)e1 = (ωi)e2 . The graph Ge has first Betti number less than g. By

induction, there exists a cycle G′ of Ge together with cycle legs such that ω|G′ ∈ τ(G′) is

indecomposable. Thus ω|G′ ∈ τ(G′) is indecomposable.

5.4 Graphs with First Betti Number 2

We know from [BBKM11] that any minimal generator of the phylogenetic semigroup on a

graph with first Betti number 2 has degree at most three. In this section, we will explicitly

describe which phylogenetic semigroups have which maximal degrees of the minimal gener-

ating sets for all graphs with first Betti number 2. We will see that there are graphs with

the maximal degrees of the minimal generators equal to one, two, and three. Our analysis

is based on five different cases depending on the structure of the graph – whether the cycles

live in different components of the graph, share at least one edge, share exactly a single

vertex, there is a single edge connecting the cycles, or the cycles are more than one edge

apart from each other, see Figure 5.2 for the latter four cases.

Figure 5.2: A graph with (a) cycles sharing at least one edge, (b) cycles sharing exactly a

single vertex, (c) a single edge connecting cycles, (d) cycles more than one edge apart from

each other

Remark. Assume a graph has a degree two vertex v. Denote the edges incident to v by e1
and e2. By the definition of the phylogenetic semigroup on a graph, we have ωe1 = ωe2 for

ω ∈ τ(G). Hence, the elements of τ(G) are in one-to-one correspondence with the elements

of τ(G′) where G′ is obtained from G by replacing e1 and e2 by a single edge. To simplify

future analysis, from now on we will assume that graphs possess no degree two vertices.
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Theorem 5.14. Let G be a graph with first Betti number 2. The maximal degree of a

minimal generator of τ(G) is

� one if and only if G does not contain any cycle legs that are not cycle edges;

� two if and only if

– the cycles of G live in different connected components, or

– G contains at least one cycle leg that is not a cycle edge, all cycles of G live in

the same connected component, and they are not separated by an inner vertex;

� three if and only if the minimal cycles of G live in the same connected component and

are more than one edge apart from each other;

We will study these different cases in Lemmas 5.17–5.22. As a corollary, we can describe

the minimal generating sets of the phylogenetic semigroups on those trivalent graphs with

first Betti number two that do not have any minimal generators of degree three.

Corollary 5.15. Let G be a graph with first Betti number 2 not containing any cycle legs

that are not cycle edges. A labeling ω ∈ τ(G) is a minimal generator of τ(G) if and only if

ω is a network.

Proof. The statement follows from Theorem 5.14 and Lemma 5.7.

Corollary 5.16. Let G be a trivalent graph with first Betti number 2, and

� the cycles of G live in different connected components, or

� G contains at least one cycle leg that is not a cycle edge, all cycles of G live in the

same connected component, and they are not separated by an inner vertex.

A labeling ω ∈ τ(G) is a minimal generator of τ(G) if and only if it satisfies one of the

following conditions:

� ω is a network, or

� ω has degree two and there exists a cycle G′ of G together with its cycle legs such that

ω|G′ ∈ τ(G′) is indecomposable.

Proof. The statement follows from Theorem 5.14, Lemma 5.7, and Lemma 5.13.

Figure 5.3: Graphs with first Betti number 2 whose phylogenetic semigroups are normal

Lemma 5.17. Let G be a graph with first Betti number 2 that does not contain any cycle

legs that are not cycle edges. The maximal degree of a minimal generator of τ(G) is one.
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Proof. The cycles of G live in the same connected component. Otherwise G would have a

degree two vertex. If the connected component of G containing the cycles has one vertex,

then it is isomorphic to the right graph in Figure 5.3. If the connected component of G

containing the cycles has two vertices, then it is isomorphic to the left graph in Figure 5.3.

The connected component of G containing the cycles cannot have three or more vertices,

because every vertex must belong to at least two cycles.

By computations with Normaliz [BI], the phylogenetic semigroup on the left graph in

Figure 5.3 is

N{(0, 0, 0, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)},

where the last coordinate corresponds to the degree and the first three coordinates corre-

spond to edges of G in any fixed order.

By simple observation, the phylogenetic semigroup on the right graph in Figure 5.3 is

N{(0, 0, 1), (1, 0, 1), (0, 1, 1)},

where the last coordinate corresponds to the degree and the first two coordinates correspond

to edges of G in any fixed order.

Lemma 5.18. Let G be a graph with first Betti number 2 and cycles living in different

connected components. The maximal degree of a minimal generator of τ(G) is two.

Proof. Define ω ∈ τ(G) of degree two as follows: ωe = 1 for all cycle edges e of a cycle G′

of G, ωe = 2 for one cycle leg of G′, and ωe = 0 for all other cycle legs of G′. Extend this

partial labeling of G in any feasible way to a degree two labeling of G. By Lemma 5.12, ω

is indecomposable. Hence, the maximal degree of a minimal generator of τ(G) is at least

two.

On the other hand, we show that every element ω ∈ τ(G) can be decomposed as

a sum of degree one and degree two elements. By Corollary 5.11, ω restricted to each

connected component decomposes as a sum of degree one and degree two elements. These

decompositions can be combined to a decomposition of ω ∈ τ(G) as a sum of degree one

and degree two elements. Hence, the maximal degree of a minimal generator of τ(G) is

exactly 2.

We recall the notation from the previous chapter. Let G be a trivalent graph and v be

an inner vertex of G. Let {e1, e2, e3} be the edges of and iv : →֒ G be a map that is

locally an embedding and sends the central vertex of to v. For ω ∈ τ(G) denote

av(ω) := ωiv(e1), bv(ω) := ωiv(e2), cv(ω) := ωiv(e3).

In other words, av, bv , cv measure the coefficients of ω at the edges incident to v.

Every element ω ∈ τ(G) decomposes locally in a unique way into paths around an inner

vertex v. This means that there exist non-negative integers xv(ω), yv(ω), zv(ω) such that

av(ω) = yv(ω) + zv(ω),

bv(ω) = xv(ω) + zv(ω),

cv(ω) = xv(ω) + yv(ω),
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and xv(ω) + yv(ω) + zv(ω) ≤ deg(ω), see also Figure 5.4.

zv

yv xv

av

cv

bv

Figure 5.4: Notation for local paths at a vertex

Let T be a trivalent tree and ω1, ω2 ∈ τ(T ) networks. Let v be an inner vertex of T . Then

either av(ω1) = av(ω2), bv(ω1) = bv(ω2), or cv(ω1) = cv(ω2), since av(ωi)+ bv(ωi)+ cv(ωi) ∈

{0, 2} for i = 1, 2. We denote this edge by e. By exchanging values of ω1 and ω2 on

all edges of T that are on the same side with e from v, we get ω′
1, ω

′
2 ∈ τ(T ) such that

ω1 + ω2 = ω′
1 + ω′

2. We call this operation branch swapping.

Lemma 5.19. Let G be a graph with first Betti number 2 containing at least one cycle leg

that is not a cycle edge and with two cycles sharing at least one edge. The maximal degree

of a minimal generator of τ(G) is two.

Proof. By Corollary 5.5, we can assume that G is a multiple polygon graph. There is at

least one cycle leg e′ of G that is not a cycle edge for any of the cycles of G. Assume that e′

is a cycle leg of a cycle G′. Define ω of degree two as follows: ωe = 1 for all cycle edges e of

G′, ωe′ = 2, and ωe = 0 for all other edges e of G. By Lemma 5.12, the labeling ω ∈ τ(G)

is indecomposable. Hence, the maximal degree of a minimal generator is at least two.

On the other hand, we show that every element ω ∈ τ(G) can be decomposed as a sum

of degree one and degree two elements. If G is not trivalent, then by Lemma 4.7 we can

construct a trivalent graph G′ with first Betti number 2 such that the maximal degree of

the minimal generating set of τ(G) is less or equal than the one of τ(G′). Moreover, two

cycles of G′ share an edge. Hence, we can assume that G is a trivalent graph.

If there is a cycle edge e of G with ωe ∈ {0,deg(ω)}, we construct the graph Ge with

first Betti number 1 by cutting G at e. Denote the new leaf edges by e1 and e2. The

labeling ω gives a labeling ω of Ge. By Theorem 5.9, the labeling ω can be decomposed as

a sum of degree one and two labelings

ω =

deg(ω)
∑

i=1

ωi

where

(ωi)e1 = (ωi)e2 =

{

0 if ωe = 0

deg(ωi) if ωe = deg(ω)

Hence, the decomposition of ω gives a decomposition of ω with all labelings having degree

one or two. From now on we assume that there is no cycle edge e of G with ωe ∈ {0,deg(ω)}.

There are exactly two vertices of G incident to three cycle edges. We denote them by

u and v. We construct a tree G′ from G by replacing the vertex u with three new vertices

u1, u2, and u3 as in Figure 5.5. The labeling ω gives a labeling ω′ of G′. Abusing the
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notation slightly, we denote by au(ω′), bu(ω′), cu(ω′) the coordinates of ω′ corresponding to

leaf edges with endpoints u1, u2, u3, respectively.

u

v
G

u1 u2 u3

v
G′′

Figure 5.5: Construction of G′′ from G by replacing u with u1, u2, u3

The labeling ω′ can be decomposed as a sum of degree one labelings

ω′ =

deg(ω)
∑

i=1

ω′
i.

From this we want to construct a decomposition of ω ∈ τ(G). To lift an element of τ(G′)

to an element of τ(G), the parity and the degree condition have to be satisfied at leaf edges

with endpoints u1, u2, u3. This is not true for all ω′
i. We need to combine and alter these

elements. We will use local paths to assure the parity and degree conditions are satisfied.

We will construct the decomposition of ω ∈ τ(G) iteratively. In each step, we construct a

degree one or two element ω∗ and then take ω := ω − ω∗.

Case 1. degu(ω) = deg(ω). Note that xu(ω), yu(ω), zu(ω) ≥ 1, otherwise there would

be a cycle edge e of G with ωe = deg(ω).

� If there is ω′
i with exactly two of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1, then ω′
i can be lifted

to a degree one labeling of G.

� Otherwise if there is ω′
i with exactly one of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1, then

there is ω′
j with all of au(ω′

j), bu(ω′
j), cu(ω′

j) equal to 1. Then ω′
i + ω′

j can be lifted to

a degree two labeling of G.

� Otherwise there has to be ω′
i with all of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 0. Then there

is ω′
j with all of au(ω′

j), bu(ω′
j), cu(ω′

j) equal to 1. After branch swapping of ω′
i and ω′

j

at v, we get a labeling with exactly two values corresponding to au, bu, cu equal to 1.

It can be lifted to a degree on labeling of G.

Case 2. degu(ω) < deg(ω).

� If there exists ω′
i with au(ω′

i) = bu(ω′
i) = cu(ω′

i) = 0, then ω′
i lifts to a labeling of

τ(G).

Otherwise consider two subcases:

Case 2.1. xu(ω), yu(ω), zu(ω) ≥ 1.

� If there is ω′
i with exactly two of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1, then ω′
i can be lifted

to a degree one labeling of G.

� Otherwise if there is ω′
i with all of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1, then there is ω′
j

with exactly one of au(ω′
j), bu(ω′

j), cu(ω′
j) equal to 1. Then ω′

i + ω′
j can be lifted to a

degree two labeling of G.
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� Otherwise all ω′
i have exactly one of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1. Since xu(ω) ≥ 1,

there is ω′
i with au(ω′

i) = cu(ω′
i) = 0 and bu(ω′

i) = 1, and ω′
j with au(ω′

j) = bu(ω′
j) = 0

and cu(ω′
j) = 1. Then ω′

i + ω′
j can be lifted to a degree two labeling for G.

Case 2.2. Exactly two of xu(ω), yu(ω), zu(ω) ≥ 1. It is not possible to have only one

xu(ω), yu(ω), zu(ω) ≥ 1, because we assumed ωe > 0 for every cycle edge e. We assume

that xu(ω), yu(ω) ≥ 1, the other two cases are analogous.

� If there is ω′
i with exactly bu(ω′

i), cu(ω′
i), or au(ω′

i), cu(ω′
i) equal to 1, then ω′

i can be

lifted to a degree one labeling of G.

� Otherwise if there is ω′
i with exactly au(ω′

i), bu(ω′
i) equal to 1, there is ω′

j with exactly

cu(ω′
i) equal to 1, since cu(ω) > au(ω) and cu(ω) > bu(ω). After branch swapping

ω′
i and ω′

j at v, we either get a labeling with all values corresponding to au, bu, cu
equal to 0 or a labeling with values corresponding to bu, cu equal to 1 or a labeling

with values corresponding to au, cu equal to 1. They all can be lifted to a degree one

labeling of G.

� Otherwise if there is ω′
i with all of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1, there is ω′
j with

exactly cu(ω′
j) equal to 1, since cu(ω) > au(ω) and cu(ω) > bu(ω). Then ωi + ωj can

be lifted to a degree two labeling of G.

� Otherwise all ω′
i have exactly one of au(ω′

i), bu(ω′
i), cu(ω′

i) equal to 1. Since xu(ω) ≥ 1,

there is ω′
i with au(ω′

i) = cu(ω′
i) = 0 and bu(ω′

i) = 1, and ω′
j with au(ω′

j) = bu(ω′
j) = 0

and cu(ω′
j) = 1. Then ω′

i + ω′
j can be lifted to a degree two labeling for G.

At each step a degree one or two element is constructed. This assures that the iterative

process comes to an end, because the degree of ω decreases.

Lemma 5.20. Let G be a graph with first Betti number 2 containing at least one cycle leg

that is not a cycle edge and with two cycles sharing exactly one vertex. The maximal degree

of a minimal generator of τ(G) is two.

Proof. By Corollary 5.5, we can assume that G is a multiple polygon graph. There is at

least one cycle leg e′ of G that is not a cycle edge for any of the cycles of G. Assume that e′

is a cycle leg of a cycle G′. Define ω of degree two as follows: ωe = 1 for all cycle edges e of

G′, ωe′ = 2, and ωe = 0 for all other edges e of G. By Lemma 5.12, the labeling ω ∈ τ(G)

is indecomposable. Hence, the maximal degree of a minimal generator is at least two.

On the other hand, we show that every element ω ∈ τ(G) can be decomposed as a sum

of degree one and degree two elements. We construct a trivalent graph G′ from G as in

Lemma 4.7 such the that the maximal degree of the minimal generating set of τ(G) is less

or equal than the one of τ(G′). In particular, first we decrease the valency at the vertex v

that is on both cycles. We replace it by vertices v′, v′′, and an edge e between them such

that e belongs to both cycles. We repeat replacing vertices until there are only trivalent

vertices left. The graph G′ has two cycles that share at least one edge, thus we can apply

Lemma 5.19.
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Lemma 5.21. Let G be a graph with first Betti number 2 and the two cycles separated by

a single edge e. The maximal degree of a minimal generator of τ(G) is two.

Proof. Define ω ∈ τ(G) of degree two as follows: ωe = 1 for all cycle edges e, ωe = 2 for

the single edge separating cycles, and ωe = 0 for all other edges. By Lemma 5.12, ω is

indecomposable. Hence, the maximal degree of a minimal generator of τ(G) is at least two.

On the other hand, we show that every element ω ∈ τ(G) can be decomposed as a sum

of degree one and degree two elements. If G is not trivalent, then by Lemma 4.7 we can

construct a trivalent graph G′ with first Betti number 2 such that the maximal degree of

the minimal generating set of τ(G) is less or equal than the maximal degree of the minimal

generating set of τ(G′). Moreover, we may assume that every time we replace a vertex v on

a cycle by vertices v′, v′′, and an edge between them, then v′, v′′ belong to the same cycle.

This assures that the two cycles of G′ are separated by a singe edge. Hence, we can assume

that G is a trivalent graph.

Let e1, e2 be new leaf edges obtained by cutting G at e, and write Ge = G1 ⊔ G2. The

labeling ω gives labelings ω1 of G1 and ω2 of G2. By Corollary 5.11, we can decompose ω1

and ω2 as a sum of degree one and degree two elements. Because all degree two labelings

in these decompositions have values 0 or 2 corresponding to the edges e1 and e2, we can

combine decompositions of ω1 and ω2 to get a decomposition of ω that consists of degree

one and two elements. Hence, the maximal degree of a minimal generator of τ(G) is exactly

two.

Lemma 5.22. Let G be a graph with first Betti number 2 and the two cycles more than one

edge apart from each other. The maximal degree of a minimal generator of τ(G) is three.

Proof. By Corollary 5.5, we can assume that G is a multiple polygon graph. We need to

specify a degree three indecomposable element ω ∈ τ(G). Fix an inner vertex v on the path

between the two cycles of G and an edge e∗ incident to v that is not on the path between

the two cycles. Define ωe = 2 for all cycle edges e and all edges e on the path between the

cycles of G, ωe∗ = 2, and ωe = 0 for all other edges e.

We will show that ω is indecomposable as a degree three labeling. By contradiction,

assume ω = ω1 + ω2 where deg(ω1) = 1 and deg(ω2) = 2. We must have (ω2)e = 1 for all

cycle edges of G and (ω2)e = 2 for both cycle legs e that lie on the path between the two

cycles. Hence, we have (ω2)e = 2 for all edges e that lie on the path between the two cycles.

Thus (ω1)e∗ = 2 . This leads to a contradiction, because deg(ω1) = 1. Hence, the labeling

ω is a degree three indecomposable element in τ(G).

Proof of Theorem 5.14. Theorem follows from Lemmas 5.17–5.22.

5.5 Minimal Generators of Degree Three

In this section, we will describe the minimal generators of degree three of the phylogenetic

semigroups on the trivalent graphs with first Betti number 2 and with the cycles more than

one edge apart from each other. As a result, we can describe the minimal generating sets
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of the phylogenetics semigroups on the trivalent graphs with first Betti number 2 and with

the cycles more than one edge apart from each other.

Theorem 5.23. Let G be a trivalent graph with first Betti number 2 and the cycles of G

more than one edge apart from each other. Then ω ∈ τ(G) is a minimal generator of τ(G)

if and only if it satisfies one of the following conditions:

� ω is a network, or

� ω has degree two, and there exists a cycle G′ of G together with its cycle legs such

that ω|G′ ∈ τ(G′) is indecomposable, or

� ω has degree three, and it satisfies the following three conditions:

(i) ω restricted to any cycle with its cycle legs does not decompose as a sum of degree

one labelings,

(ii) ω restricted to an edge on the shortest path between two cycles has value one or

two, and

(iii) ω restricted to exactly one edge incident to an edge on the shortest path between

two cycles that is not a cycle edge or an edge on the shortest path has value one

or two, and has value zero or three on all other such edges.

Together with Corollaries 5.15 and 5.16, Theorem 5.23 completes the characterization

of the minimal generating sets of the phylogenetic semigroups on the trivalent graphs with

first Betti number 2.

This section is organized as follows. In Lemma 5.24, we will characterize when a degree

three labeling on a trivalent polygon graph cannot be decomposed as a sum of degree one

labelings, and then we will extend this characterization to all trivalent graphs with first

Betti number 1 in Corollary 5.26. In Lemma 5.27, we will use these results to describe the

indecomposable labelings of degree three on the trivalent graphs with first Betti number 2

and cycles more than one edge apart from each other.

Let G be a trivalent graph with first Betti number 1 and ω a degree two indecomposable

labeling. Label the cycle legs of G where ω has value two by e0, . . . , e2k in clockwise order.

Slightly abusing the notation, we write ei+j for ei+j mod 2k where i + j > 2k. Label by

Pe′,e′′ the path starting at a cycle leg e′ and going in the clockwise direction until reaching

a cycle leg e′′ . Write Pi for Pei,ei+1
. We say a cycle leg e is between cycle legs ei and ej,

when e is between cycle legs ei and ej in clockwise direction.

Lemma 5.24. Let G be a trivalent polygon graph and ω ∈ τ(G) a degree three labeling.

Then ω cannot be decomposed as a sum of degree one labelings if and only if ω = ω1 + ω2

such that

� deg(ω1) = 1 and deg(ω2) = 2,

� ω2 is indecomposable with value two on cycle legs e0, . . . , e2k and value zero on all

other cycle legs,
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� ω1 is P0∪P2∪ . . .∪P2k−2, P0∪P2∪ . . . P2k−4∪Pe2k−2,e2k , or P0∪P2∪ . . . P2k−2∪Pe2k,e′

where e′ is a cycle leg between e2k and e0, or also the cycle path if k = 0.

Proof. A degree three labeling ω can be always decomposed as ω = ω1+ω2 with deg(ω1) = 1

and deg(ω2) = 2. We show that unless ω1, ω2 are as in the statement of the lemma, we can

alter ω1, ω2 to get ω′
1, ω

′
2 such that ω1 + ω2 = ω′

1 + ω′
2 and ω′

2 decomposes as a sum of two

degree one labelings.

If there is Pi such that it does not intersect the network ω1, then the union of ω1 and Pi

is a network and the complement of Pi in ω2 decomposes as the sum of Pi+1∪Pi+3∪. . .∪Pi−2

and Pi+2 ∪ Pi+4 ∪ . . . ∪ Pi−1. We will assume from now on that every Pi intersects ω1.

If there exist ei and ej such that neither of them is incident to a path in ω1, then

either ej = ei+2l or ei = ej+2l for some 1 ≤ l ≤ k. In the first case, let Γ be the union

of paths in ω1 from ei to ej , and define ω′
1 = ω1\Γ ∪ Pi ∪ Pi+2 ∪ . . . ∪ Pj−2 and ω′

2 =

ω2\(Pi ∪ Pi+2 ∪ . . . ∪ Pj−2) ∪ Γ. Then ω′
2 decomposes as the sum Γ ∪Pj ∪Pj+2 ∪ . . . ∪Pi−1

and Pj+1∪Pj+3∪ . . .∪Pi−2∪Pi+1∪Pi+3∪ . . .∪Pj−1. In the second case, the same discussion

applies for i and j exchanged. We will assume from now on that there is at most one ei
that is not incident to a path in ω1.

If ω1 corresponds to the cycle path Pcycle and k ≥ 1, then ω decomposes as the sum of

Pe2,e1 and Pe0,e2 ∪ P3 ∪ P5 ∪ . . . ∪ P2k−1 and Pe1,e3 ∪ P4 ∪ P6 ∪ . . . ∪ P2k. Here we use that

Pcycle ∪ P0 ∪ P1 ∪ P2 = Pe0,e2 ∪ Pe1,e3 ∪ Pe2,e1 .

It there is a path Pe′,e′′ in ω1 such that not both e′, e′′ belong to {e0, . . . , e2k}, then we

consider five different cases:

� If there is a path Pi such that e′, e′′ are both between ei and ei+1, define ω′
1 = ω1\Pe′,e′′

and ω′′
2 = ω2 ∪ Pe′,e′′ . Since Pe′,e′′ ∪ Pi = Pei,e′′ ∪ Pe′,ei+1

, the labeling ω′
2 decomposes

as the sum of Pei,e′′ ∪ Pi+1 ∪ Pi+3 ∪ . . . ∪ Pi−2 and Pe′,ei+1
∪ Pi+2 ∪ Pi+4 ∪ . . . ∪ Pi−1.

� If there is a path Pi such that e′ is before ei and e′′ is between ei and ei+1, define

ω′
1 = ω1\Pe′,e′′ ∪ Pe′,ei and ω′

2 = ω2\(Pi−1 ∪ Pi) ∪ Pei−1,ei+1
∪ Pei,e′′ . Then ω1 + ω2 =

ω′
1 + ω′

2, since Pe′,e′′ ∪ Pi−1 ∪ Pi = Pe′,ei ∪ Pei−1,ei+1
∪ Pei,e′′ . Then ω′

2 decomposes as

the sum of Pei−1,ei+1
∪ Pi+2, . . . ∪ Pi−3 and Pei,e′′ ∪ Pi+1 ∪ . . . ∪ Pi−2.

� If there are paths Pei,e′ and Pe′′,ej in ω1 such that e′ is between ei and ei+1, and

e′′ is between ej−1 and ej , and ej = ei+2l+1 for some 0 ≤ l ≤ k − 1, let Γ be

the union of paths between ei and ej . Define ω′
1 = ω1\Γ ∪ Pi ∪ Pi+2 ∪ . . . ∪ Pj−1

and ω′
2 = ω2\(Pi ∪ Pi+2 ∪ . . . ∪ Pj−1) ∪ Γ. Then ω′

2 decomposes as the sum of

Pei,e′ ∪ Pi+1 ∪ Pi+3 ∪ . . . ∪ Pi−2 and Γ\Pei,e′ ∪ Pj+1 ∪ Pj+3 ∪ . . . ∪ Pi−1.

� If there are paths Pei,e′ and Pe′′,ej in ω1 such that the edge e′ is between ei and ei+1,

the edge e′′ is between ej−1 and ej and ej = ei+2l for some 1 ≤ l ≤ k, let Γ be

the union of paths between ej and ei together with Pei,e′ and Pe′′,ej . Define ω′
1 =

ω1\Γ∪Pj∪Pj+2∪. . .∪Pi−1 and ω′
2 = ω2\(Pj∪Pj+2∪. . .∪Pi−1)∪Γ. Then ω′

2 decomposes

as the sum of Γ\Pei,e′ ∪ Pi ∪ Pi+2 ∪ . . . ∪ Pj−2 and Pei,e′ ∪ Pi+1 ∪ Pi+3 ∪ . . . ∪ Pi−2.
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� If there are paths Pei,e′ and Pej ,e′′ in ω1 such that the edge e′ is between ei and ei+1, the

edge e′′ is between ej and ej+1 and ej = ei+2l for some 1 ≤ l ≤ k, let Γ be the union of

paths in ω1 between ei and e′′ without Pei,e′ . Define ω′
1 = ω1\Γ∪Pi+1∪Pi+3∪. . .∪Pj−1

and ω′
2 = ω2\(Pi+1 ∪ Pi+3 ∪ . . . ∪ Pj−1) ∪ Γ. Then ω′

2 decomposes as the sum of

Pej ,e′′ ∪Pj+1 ∪Pj+3 ∪ . . .∪Pj−2 and Pj ∪Pj+2 ∪ · · · ∪Pi−1 ∪ Γ\Pej ,e′′ . If ej = ei+2l+1

for some 0 ≤ l ≤ k − 1 then the same discussion works for i and j exchanged.

If none of the five if-conditions holds, then the unique path of the form Pe′,e′′ in ω1 such

that not both e′, e′′ belong to {e0, . . . , e2k} must be Pei,e′ or Pe′′,ei+1
with e,′ e′′ between ei

and ei+1.

If there is a path in ω1 of the form Pei,ej , then we consider three different cases:

� If there exists Pei,ej with ej = ei+2l+1 for 1 ≤ l ≤ k − 1, then define ω′
1 = ω1\Pei,ej ∪

Pi∪Pi+2∪ . . .∪Pj−1 and ω′
2 = ω2\(Pi∪Pi+2∪ . . .∪Pj−1)∪Pei,ej . Since Pei,ej ∪Pj−2 =

Pei,ej−1
∪ Pej−2,ej , then ω′

2 decomposes as the sum of Pei,ej−1
∪ Pj ∪ Pj+2 ∪ . . . ∪ Pi−2

and Pi+1 ∪ Pi+3 ∪ . . . ∪ Pj−4 ∪ Pej−2,ej ∪ Pj+1 ∪ Pj+3 ∪ . . . ∪ Pi−1.

� If there exists Pei,ej with ej = ei+2l for 2 ≤ l ≤ k, assume that j = 0. Define ω′
1 =

ω1\Pei,ej ∪Pei,ej−2
∪Pj−1 and ω′

2 = ω2\(Pj−3∪Pj−2∪Pj−1)∪Pj−3,j−1∪Pj−2,j. Then

ω1 +ω2 = ω′
1+ω′

2 since Pei,ej ∪Pj−3∪Pj−2∪Pj−1 = Pei,ej−2
∪Pj−3,j−1∪Pj−2,j∪Pj−1.

Then ω′
2 decomposes as the sum of P0 ∪P2 ∪ . . .∪Pj−3,j−1 and P1 ∪P3 ∪ . . .∪Pj−2,j.

� If there exist Pei1 ,ei2
, Pej1 ,ej2

such that ei2 = ei1+2l, ej2 = ej1+2m for 1 ≤ l,m ≤ k and

ej2 = ei1+2n+1 for some 0 ≤ n ≤ k − 1, assume that Pj1,j2 is the next path with such

property after Pi1,i2 in clockwise direction. Denote all paths between ei1 and ej2 in

ω1 by Γ. Define ω′
1 = ω1\Γ∪Pi1 ∪Pi1+2 ∪ . . .∪Pj2−1 and ω′

2 = ω2\(Pi1 ∪Pi1+2 ∪ . . .∪

Pj2−1) ∪ Γ. Then ω′
2 decomposes as the sum of Γ\ Pej1 ,ej2

∪ Pj1 ∪ Pj1+2 ∪ · · · ∪ Pi1−2

and Pi1+1 ∪Pi1+3 ∪ . . .∪Pj1−2 ∪Pej1 ,ej2
∪Pj2+1 ∪ . . .∪Pi1−1. If ej2 = ei1+2n for some

1 ≤ n ≤ k − 1 then the same discussion works for i’s and j’s exchanged.

If none of the three if-conditions holds, then only paths in ω1 of the form Pei,ej can be

Pi, and at most one Pej ,ej+2
.

Finally, we have to show that ω1 cannot simultaneously contain paths Pei,e′ and Pej ,ej+2

where i, j ∈ {0, . . . , 2k} and e′ is between ei and ei+1. We consider two different cases:

ej = ei+2l for 1 ≤ l ≤ k − 1 and ej = ei+2l+1 for 0 ≤ l ≤ k − 1. If we have Pe′,ei instead of

Pei,e′ then we can apply the same discussion in the counterclockwise direction.

In the first case there must be et with t = i + 2l + 1 between e′ and ej that is not

incident to any of the paths in ω1. Otherwise paths between e′ and ej in ω1 would be

Pi+1, Pi+3, . . . , Pj−1, which is not possible, since Pej ,ej+2
is in ω1. Let Γ be the union of

paths in ω1 between ei and et. Define ω′
1 = ω1\Γ ∪ Pi ∪ Pi+2 ∪ . . . ∪ Pt−1 and ω′

2 =

ω2\(Pi ∪Pi+2 ∪ . . . ∪ Pt−1) ∪ Γ. Then ω′
2 decomposes as the sum of Γ ∪Pt ∪Pt+2 ∪ . . . Pi−2

and Pt+1 ∪ Pt+3 ∪ . . . Pt−2.

In the second case let Γ be the union of paths in ω1 from ei to ej+2. Define ω′
1 =

ω1\Γ∪Pi∪Pi+2 ∪ . . .∪Pj+1 and ω′
2 = ω2\(Pi ∪Pi+2∪ . . .∪Pj+1)∪Γ. Then ω′

2 decomposes

as the sum of Pei,e′ ∪ Pi+1 ∪ Pi+3 ∪ . . . ∪ Pi−2 and Γ\Pei,e′ ∪ Pj+3 ∪ Pj+5 ∪ . . . ∪ Pi−1.
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If none of the previous is true for ω, then ω is as in the statement of the lemma. We

will show that the only decomposition of ω is ω = ω1 + ω2. This implies that we cannot

decompose ω as a sum of degree one labelings as ω2 is indecomposable.

In all four cases, we have ωe ≥ 2 for a cycle leg e if and only if e ∈ {e0, . . . , e2k}.

Moreover, ωe = 2 holds for at most one e ∈ {e0, . . . , e2k}. We construct a decomposition

ω = ω′
1 + ω′

2 with deg(ω′
1) = 1 and deg(ω′

2) = 2. If ω1 = P0 ∪ P2 ∪ . . . P2k−2 ∪ Pe2k,e′ , then

(ω′
2)e = 2 for all e ∈ {e0, . . . , e2k} and (ω′

2)e = 0 for all other cycle legs. Indeed, there is

only one cycle leg e′ left with value one, but since the sum of values on all leaf edges must

be even we have (ω′
2)e′ = 0. For the other three cases, (ω′

2)e = 2 for all e ∈ {e0, . . . , e2k}\e,

since ωe = 3 for e ∈ {e0, . . . , e2k}\e. Thus also (ω′
2)e = 2, since the sum of values on all

leaf edges must be even. It follows that (ω′
2)e = 1 for all cycle edges, hence ω′

i = ωi for

i ∈ {1, 2}.

Corollary 5.25. Let G be a polygon graph and ω ∈ τ(G) a degree three labeling. Then ω

cannot be decomposed as a sum of degree one labelings if and only if ω can be decomposed

uniquely as ω = ω1 + ω2 with deg(ω1) = 1 and deg(ω2) = 2.

Corollary 5.26. Let G be a trivalent graph with first Betti number 1 and ω ∈ τ(G) a

degree three labeling. Then ω cannot be decomposed as a sum of degree one labelings if and

only if ω = ω1 + ω2 such that

� deg(ω1) = 1 and deg(ω2) = 2,

� ω2 is indecomposable with value two on cycle legs e0, . . . , e2k and value zero on all

other cycle legs,

� ω1 restricted to the unique cycle with its cycle legs is P0 ∪ P2 ∪ . . . ∪ P2k−2, P0 ∪P2 ∪

. . . P2k−4 ∪ Pe2k−2,e2k , or P0 ∪ P2 ∪ . . . P2k−4 ∪ Pe2k−2,e′ where e′ is a cycle leg between

e2k−2 and e2k−1, or also the cycle path if k = 0.

Proof. The statement follows directly from Lemmas 5.24 and 5.5.

Lemma 5.27. Let G be a trivalent graph with first Betti number 2 and the cycles of G more

than one edge apart from each other. A labeling ω ∈ τ(G) of degree three is indecomposable

if and only if the following conditions are fulfilled:

(i) ω restricted to any cycle with its cycle legs does not decompose as a sum of degree one

labelings,

(ii) ω restricted to an edge on the shortest path between two cycles has value one or two,

(iii) ω restricted to exactly one edge incident to an edge on the shortest path between two

cycles that is not a cycle edge or an edge on the shortest path has value one or two,

and has value zero or three on all other such edges.
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Proof. By Lemma 5.5, we can assume that G is a multiple polygon graph. Depict the

edges on the shortest path between the two cycles horizontally and edges incident to them

vertically below them as in Figure 5.2 (c).

Assume ω restricted to a cycle G1 together with its cycle legs decomposes as a sum of

degree one elements. Let e be a cycle leg of G1 on the shortest path between G1 and the

other cycle. Write Ge = G1 ⊔ G2. Then ω decomposes on G2, and this decomposition can

be extended to G.

Assume there is an edge e on the shortest path between two cycles of G such that

ωe ∈ {0, 3}. Let e′, e′′ be new leaf edges obtained by cutting G at e, and write Ge = G′⊔G′′.

Then ω|G′ and ω|G′′ can be decomposed as

ω|G′ = ω′
1 + ω′

2 and ω|G′′ = ω′′
1 + ω′′

2

with deg(ω′
1) = deg(ω′′

1) = 1 and deg(ω′
2) = deg(ω′′

2 ) = 2. Furthermore, (ω′
i)e′ = (ω′′

i )e′′ for

i = 1, 2 and hence they can be combined to a decomposition of ω.

Assume now that the conditions (i), (ii) are fulfilled. The labeling ω can be decomposed

if and only if it can be decomposed as

ω = ω1 + ω2

with deg(ω1) = 1 and deg(ω2) = 2. There is a unique way of defining ω1 and ω2 on cycles

and cycle legs by Corollary 5.25. We try to construct a decomposition of ω on all other

edges step-by-step going from left to right such that the decomposition is compatible with

the decomposition on the cycle legs on the shortest path between the two cycles, and study

when there exists no such decomposition. Let e be the leftmost edge of the shortest path

between two cycles where ω1 and ω2 are defined, and let the vertex v be the right endpoint

of e. Using the notation from Chapter 4, we want to define bv(ωi) and cv(ωi) given av(ωi)

for i = 1, 2.

All possible local decompositions of ω at an inner vertex between the two cycles (as-

suming that horizontal edges have values one or two) are presented in Figures 5.6 and 5.7.

In Figure 5.6 the value of ω at the vertical edge is zero or three. In Figure 5.7 the value of

ω at the vertical edge is one or two.

Figure 5.6: Degree three local decompositions, 1

Figure 5.7: Degree three local decompositions, 2

Given a local decomposition at v as in Figure 5.6 and av(ωi), then there is a unique

way of defining bv(ωi) and cv(ωi). In particular, if av(ω2) ∈ {0, 2} then bv(ω2) ∈ {0, 2}. If

58



av(ω2) = 1 then bv(ω2) = 1. Given a local decomposition at v as in Figure 5.7 and av(ωi),

then there might be a unique way of defining bv(ωi) and cv(ωi), or not, depending on the

value of av(ω2). If av(ω2) ∈ {0, 2} then bv(ω2) = 1. If av(ω2) = 1 then one can define either

bv(ω2) ∈ {0, 2} or bv(ω2) = 1.

Let e be a cycle leg that is on the path between two cycles. If ωe = 2, then (ω1)e = 0

and (ω2)e = 2, because a degree two indecomposable element on a cycle can have only

values zero and two on cycle legs by Theorem 5.9. If ωe = 1, then (ωe)1 = 1 and (ωe)2 = 0

for the same reasons. Denote by er the cycle leg of the right cycle that are on the path

between two cycles.

If the horizontal path contains labelings only as in Figure 5.6, then bv(ω2) ∈ {0, 2} for

every vertex v on the horizontal path. In particular, (ω2)er ∈ {0, 2}, hence there exists a

decomposition of ω.

If at more than one vertex the local decomposition is as in Figure 5.7, denote the

first such vertex by v′ and the last one by v′′. For all the vertices v left from v′, the value

bv(ω) ∈ {0, 2} is uniquely defined. For v′, we have bv′(ω) = 1. For all the vertices v between

v′ and v′′, we can define bv(ω) = 1: If the local decomposition at v is as in Figure 5.7 then we

have this choice by the discussion below. If the local decomposition at v is as in Figure 5.6

then bv(ω2) = 1 since av(ω2) = 1 again by the discussion above. For v = v′′, we define

bv(ω2) ∈ {0, 2}. At all vertices v to the right of v′′, we have local decompositions as in

Figure 5.6, therefore bv(ω2) ∈ {0, 2}. In particular, (ω2)er ∈ {0, 2} and the decomposition

of ω on the horizontal path is compatible with the decompositions of ω on both cycles.

Hence, the labeling ω is decomposable.

On the other hand, if at one vertex v′ the local decomposition is as in Figure 5.7 and

at all other vertices the local decomposition is as in Figure 5.6, then bv(ω2) ∈ {0, 2} for

all vertices v left from v′ and bv(ω2) = 1 for all vertices v to the right of v′ including v′

itself. In particular, (ω2)er = 1 which is not compatible with the values of ω2 on the right

cycle. Since all steps have been uniquely determined, then ω cannot be decomposed. This

completes the proof.

Proof of Theorem 5.23. The statement follows from Lemmas 5.7, 5.13, and 5.27.

5.6 Examples

In this section, we will list some examples of graphs with first Betti number 3, 4, and

5 together with the maximal degree of the minimal generating set of their phylogenetic

semigroup.1 Maximal degrees have been computed with Normaliz [BI]. We will also show

that, for any natural number g, there exists a graph G with first Betti number g such that

the maximal degree of a minimal generator of τ(G) is one.

We note that the maximal degree tends to depend on the “separateness” of the cycles,

exactly as we proved in Section 5.4 for the graphs with first Betti number 2. This suggests

1We thank Christopher Manon for introducing us the trivalent graph with first Betti number 4 and

maximal degree one, see Figure 5.10.
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that the maximal degree of the minimal generating set of the phylogenetic semigroup on

the g-caterpillar graph is maximal among the graphs with first Betti number g and that,

for g odd, there is no graph with first Betti number g such that the maximal degree of its

phylogenetic semigroup is g + 1.

Figure 5.8: Graph with two vertices and seven edges

Example 5.28. Let G be the graph with first Betti number g that has two vertices and

g + 1 edges between the two vertices, as illustrated in Figure 5.8. Then τ(G) is generated

in degree one. By cutting all edges of G, we get two claw trees T ′, T ′′ with g + 1 leaves.

Let ω ∈ τ(G) be a degree d labeling. Then ω gives ω′ ∈ T ′ and ω′′ ∈ T ′′ with ω′ = ω′′ that

we can decompose as a sum of d degree one labelings exactly the same way on both trees.

Gluing the decompositions of ω′ and ω′′ gives a decomposition of ω as a sum of degree one

labelings.

4

4

44

3

3

2

2

2

2

2

2

1

Figure 5.9: Maximal degrees of the minimal generating set of τ(G) where G is a graph with

first Betti number 3
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Figure 5.10: Maximal degrees of the minimal generating set of τ(G) where G is a graph

with first Betti number 4

5 4

Figure 5.11: Maximal degrees of the minimal generating set of τ(G) where G is a graph

with first Betti number 5
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Chapter 6

Group-Based Models and

Berenstein-Zelevinsky Triangles

6.1 Introduction

This chapter will be a part of a joint paper with Christopher Manon. All results presented

here unless otherwise stated were worked out by the author of this dissertation indepen-

dently.

The aim of this chapter is to establish a combinatorial connection between semigroups

associated with group-based models and BZ triangles motivated by the work of Sturmfels,

Xu and Manon. Manon constructed flat degenerations of the algebra of SL2(C) conformal

blocks for a stable curve of genus g and n marked points to the semigroup algebra of

the phylogenetic semigroup on a graph with first Betti number g with n leaves [Man09].

The g = 0 case was first treated by Sturmfels and Xu [SX10], whereby in this case the

phylogenetic semigroups are the semigroups associated with the Jukes-Cantor binary model.

Manon also constructed toric degenerations of SL3(C) conformal block algebras to semi-

group algebras of rank two graded BZ triangles [Man12a]. Berenstein and Zelevinsky de-

fined BZ triangles as an alternative to the Littlewood-Richardson rule for counting the

dimension of the triple tensor product invariants [BZ92]. BZ triangles appear for example

in the work of Knutson and Tao [KT99], where they prove the saturation conjecture for the

monoid of triples with the corresponding triple tensor product non-empty. From the result

of Manon follows that the Hilbert polynomial of rank two graded BZ triangles associated

with a trivalent tree does not depend on the shape of the tree.1 Hence, rank two graded

BZ triangles generalize the theorem by Buczyńska and Wísniewski [BW07], which fails to

be true for other group-based models [Kub12, DM12].

Therefore, semigroup algebras of the Jukes-Cantor binary model and rank two graded

Berenstein-Zelevinski triangles are both toric degenerations of conformal block algebras.

Their Hilbert polynomials do not depend on the shape of the tree. This raises the question

1We proved the same result based on Lemma 2.6 using Macaulay2, but as our proof relies on comparing

big files containing Hilbert series we will not present it in this dissertation.
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whether there is a connection between group-based models and BZ triangles. The main

result of this chapter states that the semigroup associated with the group-based model

with the underlying group Zr+1 is contained in the projection of the semigroup of rank r

Berenstein-Zelevinsky triangles to the corresponding highest weights.

In Section 6.2, we recall the definition of a BZ triangle and the semigroup of BZ triangles

on a trivalent tree. In Section 6.3, we establish the connection between group-based models

and BZ triangles on trees.

6.2 BZ Triangles

Let g = slr+1(C). Let Vλ, Vµ, Vν be irreducible finite-dimensional g-modules with highest

weights λ, µ, ν. The Littlewood-Richardson rule determines the dimension of the space of

triple tensor product invariants cλµν = dim(Vλ⊗Vµ⊗Vν)g, see for example [FH91]. In [BZ92]

Berenstein and Zelevinsky gave an alternative to the Littlewood-Richardson rule. They

showed that cλµν equals the number of integer points in the intersection of a polyhedral

cone with an affine subspace. These integer points are called BZ triangles. Manon and

Zhou extended this definition to BZ triangles on trivalent trees [MZ12]. We will recall the

definition of BZ triangles and the projections to corresponding highest weights as in [BZ92,

Section 2], and then define BZ triangles on trees similarly to [MZ12, Definition 2.2].

Let Tr be the set of integer points in the triangle with the vertices (2r− 1, 0, 0), (0, 2r−

1, 0), and (0, 0, 2r − 1):

Tr = {(i, j, k) ∈ Z3 : i + j + k = 2r − 1}.

Let Hr be the subset of Tr with all coordinates odd and Gr be the subset of Tr with exactly

one coordinate odd:

Hr = {(i, j, k) ∈ Tr : all i, j, k are odd},

Gr = Tr −Hr.

Geometrically, the elements of Gr correspond to the vertices of a graph consisting of

hexagons and triangles, and the elements of Hr correspond to the centers of the hexagons,

see Figure 6.1.

Let α = (1,−1, 0), β = (0, 1,−1), and γ = (−1, 0, 1). Let Lr be the subspace of RGr

defined by the equations

x(η + α) − x(η − α) = x(η + β) − x(η − β) = x(η + γ) − x(η − γ) (6.1)

for all η ∈ Hr. Geometrically, the elements of Lr correspond to the labelings of the vertices

of the aforementioned graph such that x(ξ1) + x(ξ2) = x(ξ′1) + x(ξ′2) for all opposite pairs

of edges [ξ1, ξ2] and [ξ′1, ξ
′
2] of all hexagons. Define a polyhedral cone Kr = Lr ∩ RGr

≥0 and

an affine semigroup BZr = Kr ∩ Z.

Definition 6.1. The elements of the affine semigroup BZr are called BZ triangles.
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(1,0,0)

(0,1,0)

(0,0,1) (3,0,0)

(2,1,0)

(1,2,0)

(0,0,3)

(0,1,2)

(0,2,1)

(2,0,1) (1,0,2)

(0,3,0)

(5,0,0)

(4,1,0)

(3,2,0)

(2,3,0)

(1,4,0)

(0,0,5)

(0,1,4)

(0,2,3)

(0,3,2)

(0,4,1)

(4,0,1) (3,0,2) (2,0,3) (1,0,4)

(0,5,0)

(2,1,2)

(2,2,1) (1,2,2)

Figure 6.1: Graphs consisting of hexagons and triangles for r = 1, 2, 3

Remark. Affine semigroups BZr are numbered by the rank. In the next section, this will

cause a difference by one in the numbering of the semigroups associated with rank r BZ

triangles and the semigroups associated with the group-based model with group Zr+1. We

stick to the numbering by rank to be consistent with [BZ92].

Example 6.2. The minimal generating sets for BZ1 and BZ2 are listed in Figures 6.2

and 6.3, respectively.

1

0

0 0

1

0 0

0

1

Figure 6.2: The minimal generating set for BZ1

We identify the lattice of g-weights with the standard lattice Zr using as the stan-

dard basis the fundamental weights ω1 = (1, 0, 0, . . . , 0), ω2 = (1, 1, 0, . . . , 0), . . . , ωr =

(1, 1, 1, . . . , 1). Define a linear projection pr:Lr −→ R3r to the vector space of triples

of g-weights by

pr(x) = (l1, . . . , lr;m1, . . . ,mr;n1, . . . , nr)

where

li = x(2(r − i) + 1, 2(i − 1), 0) + x(2(r − i), 2i − 1, 0),

mi = x(0, 2(r − i) + 1, 2(i − 1)) + x(0, 2(r − i), 2i − 1),

ni = x(2(i− 1), 0, 2(r − i) + 1) + x(2i − 1, 0, 2(r − i))

for i ∈ 1, . . . , r. The coordinates of pr(x) are pairwise sums of neighboring labels on the

boundary of the triangle starting from the lower left corner and going clockwise around

the triangle. In particular, the coordinates li correspond to the northwest edge, mi to the

northeast edge, and ni to the south edge of the triangle.
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Figure 6.3: The minimal generating set for BZ2

Example 6.3. The projections of the minimal generators of BZ1 as in Figure 6.2 are

(1; 0; 1), (1; 1; 0), (0; 1; 1).

The projections of the minimal generators of BZ2 as in Figure 6.3 are

(1, 0; 1, 0; 1, 0), (0, 1; 0, 1; 0, 1),

(1, 0; 0, 0; 0, 1), (0, 1; 1, 0; 0, 0), (0, 0; 0, 1; 1, 0),

(1, 0; 0, 1; 0, 0), (0, 0; 1, 0; 0, 1), (0, 1; 0, 0; 1, 0).

Theorem 6.4 ([BZ92], Theorem 1). Let λ =
∑

liωi, µ =
∑

miωi, and ν =
∑

niωi be three

highest g-weights. Then the triple multiplicity cλµν equals |BZr ∩ pr−1(λ, µ, ν)|.

Furthermore, we define a linear projection pre : Lr −→ Rr to the vector space of

g-weights for each edge e of the triangle by

pre(x) =







(l1, . . . , lr) if e is the northwest edge of the triangle,

(m1, . . . ,mr) if e is the northeast edge of the triangle,

(n1, . . . , nr) if e is the south edge of the triangle.

Then pre maps a BZ triangle to the corresponding λ, µ, or ν. Define pr∗e : Lr −→ Rr to be

equal to pre with coordinates in the reversed order.

Now we define the affine semigroup of rank r BZ triangles on a trivalent tree similarly

to [MZ12]. Given any trivalent tree T , consider the triangle complex C dual to T , as

illustrated in Figure 6.4. Assign one copy of BZr to each triangle t ∈ C, and denote it by

BZ
(v)
r where v is the inner vertex of T dual to the triangle t. For every edge e adjacent to

v, define pre : BZ
(v)
r → Zr to be equal to pre∗ : BZ

(v)
r → Zr where e∗ ∈ C is the edge dual

to e. All projections are taken in the clockwise direction of the corresponding triangle.
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T

C

Figure 6.4: Trees and triangle complexes duality

Definition 6.5. Let T be a trivalent graph. We define the affine semigroup of BZ triangles

on T as

BZr,T =
∏

v∈I

BZ(v)
r ∩

⋂

e=(v1,v2),v1,v2∈I

(pre(x
(v1)) = pr∗e(x

(v2))).

If T is the tripod, then BZr,T = BZr. Define prT : BZr,T → R3r|I| as the product of

pr : BZ
(v)
r → R3r with one copy for each v ∈ I.

0
0

1

0
0

0

0

0
0

0
0

0

1
0

0

0

1
0

Figure 6.5: BZ triangle on the trivalent 4-leaf tree

Example 6.6. Let T be the trivalent 4-leaf tree and C the triangle complex dual to T as

in Figure 6.4. A rank two BZ triangle on T is shown in Figure 6.5.

6.3 Connection Between Group-Based Models and BZ Tri-

angles

For the definition of the polytope PG,T associated with the group-based model with the

underlying group G and a tree T , see Definition 1.29.

Lemma 6.7. Let T be the tripod. Let e1 be the unique edge directed towards the inner

vertex, let e2 and e3 be the edges directed away from the inner vertex. The polytope PZr+1,T

has (r + 1)2 vertices. They are

� x
(e1)
0 = x

(e2)
0 = x

(e3)
0 = 1 and all other coordinates zero,

� x
(e1)
0 = x

(e2)
i = x

(e3)
r+1−i = 1 for i ∈ {1, . . . , r} and all other coordinates are zero,

� x
(e1)
i = x

(e2)
i = x

(e3)
0 = 1 for i ∈ {1, . . . , r} and all other coordinates are zero,

� x
(e1)
i = x

(e2)
0 = x

(e3)
i = 1 for i ∈ {1, . . . , r} and all other coordinates are zero,

� x
(e1)
i = x

(e2)
j = x

(e3)
k = 1 for i, j, k ∈ {1, . . . , r} with i ≡ j + k mod (r + 1) and all

other coordinates zero.
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Proof. We can freely choose labels j and k on edges e2 and e3, the label i ≡ j+k mod (r+1)

on e1 is determined by the first two. The additive group Zr+1 has r + 1 elements, hence

there are exactly (r + 1)2 possibilities to label the edges of T . Furthermore, x is a vertex

of PZr+1,T if and only if x
(e1)
i = x

(e2)
j = x

(e3)
k = 1 with i ≡ j + k mod (r + 1) and all other

coordinates are zero. All such possibilities are listed above.

Let

SG,T = N(PG,T ∩ LG,T )

be the affine semigroup generated by the lattice points of PG,T . We will study the connection

between SZr+1,T and BZr,T .

First, we assume that T is the tripod. The lattice polytope PZr+1,T and the affine

semigroup SZr+1,T live in the linear subspace of R3(r+1) defined by
∑

h∈G x
(e)
h = 1 for all

edges e ∈ E. Hence, forgetting the coordinate x
(e)
0 for all e ∈ E gives a lattice polytope

and an affine semigroup isomorphic to PZr+1,T and SZr+1,T , respectively. We also want to

reverse the order of the coordinates corresponding to the edge e1.

Definition 6.8. Define a linear map f : R3(r+1) → R3r to the vector space of triples of

g-weights by

f(x) = (l1, . . . , lr;m1, . . . ,mr;n1, . . . , nr)

where

li = x
(e1)
r+1−i,

mi = x
(e2)
i ,

ni = x
(e3)
i

for all i = 1, . . . , r. For every edge e of the tripod, define a linear map fe : Rr+1 → Rr by

fe(x) =







(l1, . . . , lr) if e = e1,

(m1, . . . ,mr) if e = e2,

(n1, . . . , nr) if e = e3.

Corollary 6.9. Let T be the tripod. Let e1 be the unique edge directed towards the in-

ner vertex, let e2 and e3 be the edges directed away from the inner vertex. The polytope

f(PZr+1,T ) has (r + 1)2 vertices. They are

� the zero vertex,

� mi = nr+1−i = 1 for a fixed i ∈ {1, . . . , r} and all other coordinates zero,

� li = mr+1−i = 1 for a fixed i ∈ {1, . . . , r} and all other coordinates zero,

� li = nr+1−i = 1 for a fixed i ∈ {1, . . . , r} and all other coordinates zero,

� li = mj = nk = 1 for fixed i, j, k ∈ {1, . . . , r} with i + j + k ≡ 0 mod (r + 1) and all

other coordinates zero.
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Example 6.10. Let T be the tripod. Labelings of the edges of T with elements of Z2 and

Z3 such that at the inner vertex the sum of labels on the incoming edge equals the sum of

labels on the outgoing edges are shown in Figures 6.6 and 6.7. These labelings correspond

to the vertices of PZ2,T and PZ3,T . The vertices of f(PZ2,T ) and f(PZ3,T ) without the zero

vertex correspond one-to-one with the minimal generators of the semigroup of rank one

and rank two BZ triangles as in Example 6.3. We will prove in the next theorem that there

is a similar connection between rank r BZ triangles and the group-based model with the

underlying group Zr+1.

0

0

0 1

1

0 1

0

1 0

1

1

Figure 6.6: Labelings of the tripod with elements of Z2
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1 0

1

2

2

0

2 0

2

1 1

1

0

Figure 6.7: Labelings of the tripod with elements of Z3

Theorem 6.11. Let T be the tripod. For r ∈ N,

pr(BZr) ⊇ f(SZr+1,T ).

For r ∈ {1, 2}, the inclusion is equality.

Proof. We will prove that every vertex of f(PZr+1,T ) is in pr(BZr). This implies the desired

inclusion f(SZr+1,T ) ⊆ pr(BZr), since SZr+1,T is generated by the vertices of PZr+1,T and

the map f induces an isomorphism between SZr+1,T and f(SZr+1,T ).

� The zero vertex of f(PZr+1,T ) equals the projection of the zero BZ triangle.

� Let i ∈ {1, . . . , r}. Define x as follows: x(0, 2(r−i), 2i−1) = x(2, 2(r−i)−2, 2i−1) =

. . . = x(2(r − i), 0, 2i − 1) = 1 and all other coordinates equal to zero. By condition
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(6.1), x is a BZ triangle. The vertex of f(PZr+1,T ) with mi = nr+1−i = 1 and all other

coordinates zero equals pr(x).

� Let i ∈ {1, . . . , r}. Define x as follows: x(2(r−i), 2i−1, 0) = x(2(r−i)−2, 2i−1, 2) =

. . . = x(0, 2i − 1, 2(r − i)) = 1 and all other coordinates equal to zero. By condition

(6.1), x is a BZ triangle. The vertex of f(PZr+1,T ) with li = mr+1−i = 1 and all other

coordinates zero equals pr(x).

� Let i ∈ {1, . . . , r}. Define x as follows: x(2(r− i)+1, 2(i−1), 0) = x(2(r− i)+1, 2(i−

1)−2, 2) = . . . = x(2(r− i)+1, 0, 2(i−1)) = 1 and all other coordinates equal to zero.

By condition (6.1), x is a BZ triangle. The vertex of f(PZr+1,T ) with li = nr+1−i = 1

and all other coordinates zero equals pr(x).

� Let i, j, k ∈ {1, . . . , r} with i+j+k = r+1. Note that 2(i+j+k)−3 = 2r+2−3 = 2r−1.

Define x as follows:

x(2k, 2i − 1, 2j − 2) = x(2k + 2, 2i− 1, 2j − 4) = . . . = x(2(r − i), 2i − 1, 0) = 1,

x(2k − 2, 2i, 2j − 1) = x(2k − 4, 2i + 2, 2j − 1) = . . . = x(0, 2(r − j), 2j − 1) = 1,

x(2k − 1, 2i − 2, 2j) = x(2k − 1, 2i− 4, 2j + 2) = . . . = x(2k − 1, 0, 2(r − j)) = 1

and all other coordinates zero. The vertex of f(PZr+1,T ) with li = mi = ni = 1 and

all other coordinates zero equals pr(x).

� Let i, j, k ∈ {1, . . . , r} with i + j + k = 2(r + 1). Note that 6r − 2(i + j + k) + 3 =

6r − 4r − 4 + 3 = 2r − 1. Define x as follows:

x(2(r − i) + 1, 2(r − j) + 2, 2(r − k)) = x(2(r − i) + 1, 2(r − j) + 4, 2(r − k) − 2)

= . . . = x(2(r − i) + 1, 2(i − 1), 0) = 1,

x(2(r − i), 2(r − j) + 1, 2(r − k) + 2) = x(2(r − i) − 2, 2(r − j) + 1, 2(r − k) + 4)

= . . . = x(0, 2(r − j) + 1, 2(i − 1)) = 1,

x(2(r − i) + 2, 2(r − j), 2(r − k) + 1) = x(2(r − i) + 4, 2(r − j) − 2, 2(r − k) + 1)

= . . . = x(2(i − 1), 0, 2(r − k) + 1) = 1

and all other coordinates zero. The vertex of f(PZr+1,T ) with li = mi = ni = 1 and

all other coordinates zero equals pr(x).

Example 6.10 proves the equality for r ∈ {1, 2}.

Remark. Moreover, the semigroups BZ1 and f(SZ2,T ) are isomorphic. Although we have

pr(BZ2) = f(SZ3,T ), the semigroups BZ2 and f(SZ3,T ) are not isomorphic. The toric ideal

corresponding to the semigroup BZ2 is generated by one cubic polynomial, whereas the

toric ideal corresponding to f(SZ3,T ) is generated by two cubic polynomials. For r ≥ 3,

also the inclusion pr(BZr) ⊇ f(SZr+1,T ) is strict. A rank r BZ triangle with the projection

(1, 0, . . . , 0, 1; 0, 1, 0, . . . , 0; 0, . . . , 0, 1, 0) is not in f(SZr+1,T ).
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Corollary 6.12. Let T be the tripod. For r ∈ N, the elements of SZr+1,T can be labeled by

non-trivial triple tensor product invariants.

Proof. The statement follows from Theorems 6.11 and 6.4.

Now we state a similar result for any trivalent tree T . Define fT : R|E|(r+1) → R3r|I| as

the direct product of f : R3(r+1) → R3r with one copy for each v ∈ I.

Corollary 6.13. Let T be a trivalent tree. For r ∈ N,

prT (BZr,T ) ⊇ fT (SZr+1,T ).

Furthermore, for r ∈ {1, 2}, the equality holds.

Proof. Maps prT and fT are direct products of pr and f with one copy for each v ∈ I. We

have

prT (BZr,T ) =
∏

v∈I

pr(BZ(v)
r ) ∩

⋂

e=(v1,v2),v1,v2∈I

(pre(x
(v1)) = pr∗e(x

(v2))).

We need to show that, for every inner edge e = (v1, v2), the map fe : SZr+1,Tv1
→ Rr

is equal to fe : SZr+1,Tv2
→ Rr reversed where Tvi is the tripod with the inner vertex

vi for i = 1, 2. Indeed, because in one case e is directed towards the inner vertex and

in the other case e is directed away from the inner vertex, then in the first case we have

fe(x) = (x
(e)
r , x

(e)
r−1, . . . , x

(e)
1 ) and in the second case we have fe(x) = (x

(e)
1 , x

(e)
2 , . . . , x

(e)
r ).

Remark. Since the inclusion in Theorem 6.11 is strict for r ≥ 3, also the inclusion in

Corollary 6.13 is strict for r ≥ 3.

In a joint paper with Christopher Manon, further connections between semigroups as-

sociated with conformal block algebras and graded semigroups

Sgr
G,T = cone(PG,T × {1}) ∩ (LG,T × {1})

will be established.
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Appendix A

Program Code: Hilbert Polynomial

of the Kimura 3-Parameter Model

use application ’polytope’;

# Find the number of the lattice points for the 3-leaf tree.

use vars ’$s’, ’$t’, ’$B’, ’$m’, ’$sm’, ’$ineq’;

use vars ’$fix’, ’$i’, ’$j’, ’$k’, ’$l’,’$eq’, ’$a’;

use vars ’$point’, ’$counter’, ’@points’;

# Define the polytope associated to the Kimura 3-parameter model

# on the 3-leaf tree.

$s=new Polytope<Rational>(POINTS=><<".");

1 1 0 0 0 1 0 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0 1 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 1 0 0

1 0 1 0 0 0 0 0 1 0 0 1 0

1 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 0 1 0 1 0 0 0 0 1 0

.
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# Apply the vertex lattice normalization to $s.

$t=vertex_lattice_normalization($s);

# Basis transformation matrix taking vertices of $s to vertices of $t.

$B=new Matrix<Rational>(<<".");

1 -3 -3 -2 -2 -1 -1 -3 -1 0

0 3/4 3/2 1/2 1 1/4 1/2 3/2 1/2 0

0 3/4 1/2 1/2 1 1/4 1/2 1/2 0 0

0 3/4 1/2 1/2 0 1/4 1/2 1/2 1/2 -1/2

0 3/4 1/2 1/2 0 1/4 -1/2 1/2 0 1/2

0 3/2 3/4 1 1/2 1/2 1/4 0 0 0

0 1/2 3/4 1 1/2 1/2 1/4 1 1/2 0

0 1/2 3/4 0 1/2 1/2 1/4 1 0 1/2

0 1/2 3/4 0 1/2 -1/2 1/4 1 1/2 -1/2

0 3/4 3/4 1/2 1/2 1/4 1/4 3/2 1/2 0

0 3/4 3/4 1/2 1/2 1/4 1/4 1/2 0 0

0 3/4 3/4 1/2 1/2 1/4 1/4 1/2 1/2 -1/2

0 3/4 3/4 1/2 1/2 1/4 1/4 1/2 0 1/2

.

# Matrix $m for multiplying the vertices of $s by 3.

$m=new Matrix<Rational>(<<".");

1 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 3

.

# Define the polytope $sm as the convex hull of the vertices of $s

# multiplied by 3.

$sm=new Polytope<Rational>(VERTICES=>($s->VERTICES)*$m);

# $ineq contains facet inequalities for $sm.

$ineq=($sm->FACETS);

# Loop that finds the number of the lattice points for the polytope
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# 3*$s with the first 4 coordinates fixed.

$counter=0;

# The 2nd to 5th coordinate of $sm can take integer values

# from 0 to 3, which sum up to 3.

for $i (0...3){

for $j (0...(3-$i)){

for $k (0...(3-$i-$j)){

$l=3-$i-$j-$k;

# Matrix $fix for equalities that fix 2nd to 5th coordinate.

$fix=new Matrix<Rational>(<<".");

-$i 1 0 0 0 0 0 0 0 0 0 0 0

-$j 0 1 0 0 0 0 0 0 0 0 0 0

-$k 0 0 1 0 0 0 0 0 0 0 0 0

-$l 0 0 0 1 0 0 0 0 0 0 0 0

.

# Define a new set of equalities by taking the affine hull of $sm and $fix.

$eq=($sm->AFFINE_HULL)/$fix;

# Define a new polytope $a using the new set of equalities $eq and the

# inequalities of $sm.

$a=new Polytope<Rational>(INEQUALITIES=>$ineq,EQUATIONS=>$eq);

# Apply the basis transformation matrix to $a and count the lattice points.

$a=new Polytope<Rational>(POINTS=>($a->VERTICES)*$B);

$point=($a->N_LATTICE_POINTS);

# Remember all the results in the array $points.

$points[$counter]=$point;

$counter++;

}

}

}

#Find the number of the lattice points for 4-leaf tree.

use vars ’$p’, ’$r’, ’$A’, ’$m’, ’$pm’, ’$ineq’;

use vars ’$i’, ’$j’, ’$k’, ’$l’, ’$w’, ’$x’, ’$y’, ’$z’;

use vars ’$e’, ’$f’, ’$g’, ’$h’;

use vars ’$fix’, ’$eq’, ’$a’, ’$point’, ’$sum1’, ’$sum2’;

use vars ’$counter1’, ’$counter2’, ’@points1’, ’@points2’;

# Define the polytope of the Kimura 3-parameter model on the 4-leaf tree.

$p=new Polytope<Rational>(POINTS=><<".");

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
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1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1

1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0

1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0

1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0

1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0

1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0

1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0

1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0

1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0

1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0

1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0

1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0

1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
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1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1

1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0

1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0

1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1

.

# Apply vertex lattice normalization to $p.

$r=vertex_lattice_normalization($p);

# Basis transformation matrix taking vertices of $p to vertices of $r.

$A=new Matrix<Rational>(<<".");

1 3 -1 0 3 1 -1 1 3 -3 -1 1 -1 -1 -1 -2

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 0 0 0 0 0 0 0 1/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -1 1 1 0 0 0 1/2 3/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -1 1 0 0 1/2 1/2 0 1/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -1 1 0 -1 1/2 1/2 1/2 3/4

0 -3/4 1/4 0 0 -1/4 0 0 -3/4 0 1/4 -1/4 0 0 0 1/4

0 -3/4 1/4 0 -1 -1/4 1 0 -3/4 1 1/4 -1/4 0 0 1/2 3/4

0 -3/4 1/4 0 -1 -1/4 0 0 -3/4 1 1/4 -1/4 1/2 1/2 0 1/4

0 -3/4 1/4 0 -1 -1/4 0 -1 -3/4 1 1/4 -1/4 1/2 1/2 1/2 3/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -3/4 3/2 1/4 -1/4 1/2 1/4 1/2 1/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -3/4 1/2 1/4 -1/4 1/2 1/4 0 1/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -3/4 1/2 1/4 -1/4 0 1/4 1/2 3/4

0 -3/4 1/4 0 -3/4 -1/4 1/4 -1/4 -3/4 1/2 1/4 -1/4 0 1/4 0 3/4

0 0 0 -3/4 -3/4 0 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 1/4 1/4 1/4

0 -1 1 1/4 -3/4 0 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 1/4 1/4 3/4

0 -1 0 1/4 -3/4 0 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 3/4 1/4 3/4
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0 -1 0 1/4 -3/4 -1 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 -1/4 1/4 1/4

0 -3/4 1/4 3/4 -3/4 -1/4 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 1/2 1/4 1

0 -3/4 1/4 -1/4 -3/4 -1/4 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 1/2 1/4 1/2

0 -3/4 1/4 -1/4 -3/4 -1/4 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 0 1/4 1/2

0 -3/4 1/4 -1/4 -3/4 -1/4 1/4 -1/4 -3/4 3/4 1/4 -1/4 1/4 0 1/4 0

.

# Matrix $m for multiplying the vertices of $p by 3.

$m=new Matrix<Rational>(<<".");

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

.

# Define the polytope $pm as the convex hull of the vertices of $p

# multiplied by 3.

$pm=new Polytope<Rational>(VERTICES=>($p->VERTICES)*$m);

# $ineq contains facet inequalities for $pm.

$ineq=($pm->FACETS);

# Loop that finds the number of the lattice points for the polytope

# 3*$p with 14th to 21th coordinate fixed (corresponding to 2

# incident leaf edges) and with 14th to 17th coordinate fixed

# (corresponding to 1 leaf edge).

$counter1=0;
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# The 14th to 21th coordinate of 3*$s can take integer values

# from 0 to 3, coordinates 14 to 17 sum up to 3 and

# coordinates 18 to 21 sum up to 3.

for $i (0...3){

for $j (0...(3-$i)){

for $k (0...(3-$i-$j)){

$sum1=0;

$counter2=0;

for $w (0...3){

for $x (0...(3-$w)){

for $y (0...(3-$w-$x)){

# Loop that fixes 2nd to 5th coordinate corresponding to an

# additional leaf edge to make computations faster. We find

# the number of the lattice points separately for each possible

# integer fixation and then sum over all the values.

$sum2=0;

for $e (0...3){

for $f (0...(3-$e)){

for $g (0...(3-$e-$f)){

$l=3-$i-$j-$k;

$z=3-$w-$x-$y;

$h=3-$e-$f-$g;

# Matrix for equalities that fix coordinates under

# consideration.

$fix=new Matrix<Rational>(<<".");

-$i 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

-$j 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

-$k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

-$l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

-$w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

-$x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

-$y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

-$z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

-$e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-$f 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-$g 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-$h 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

# Define a new set of equalities by taking the affine hull of

# $pm and $fix.

$eq=($pm->AFFINE_HULL)/$fix;

# Define a new polytope $a using the new set of equalities $eq and
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# the inequalities of $pm.

$a=new Polytope<Rational>(INEQUALITIES=>$ineq,EQUATIONS=>$eq);

# Apply the basis transformation matrix to $a and count

# the lattice points.

$a=new Polytope<Rational>(POINTS=>($a->VERTICES)*$A);

$point=$a->N_LATTICE_POINTS;

# Sum the number of the lattice points over all possible integer

# values corresponding to the additional leaf edge.

$sum2=$sum2+$point;

}

}

}

# Array @points2 holds the number of the lattice points when 14th

# to 21st coordinate are fixed.

$points2[($counter1*20)+$counter2]=$sum2;

$sum1=$sum1+$sum2;

$counter2++;

}

}

}

# Array @points1 holds the number of the lattice points when 14th

# to 17th coordinate are fixed.

$points1[$counter1]=$sum1;

$counter1++;

}

}

}

use vars ’$sum’;

# Finding the total number of the lattice points by using the

# formulas (there are 20 possibilities for integer values

# corresponding to one edge).

$sum=0;

for $i(0...19){

for $j(0...19){

$sum=$sum+($points2[($i*20)+$j]*$points[$i]*$points[$j]);

}

}

print "Snowflake has $sum lattice points. \n \n";

$sum=0;
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for $i(0...19){

$sum=$sum+($points1[$i]*$points1[$i]);

}

print "3-caterpillar has $sum lattice points. \n";
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Anhang B

Zusammenfassung

Phylogenetische algebraische Geometrie beschäftigt sich mit algebraischen Varietäten die

mit phylogenetischen Modellen assoziiert sind. In dieser Dissertation werden Gitterpolyto-

pe und affine Halbgruppen untersucht, die mit torischen Varietäten von gruppenbasierten

phylogenetischen Modellen korrespondieren.

Laut einem Resultat von Buczyńska und Wísniewski ist die Hilbertfunktion der alge-

braischen Varietät auf dem Jukes-Cantor binären Modell und einem trivalenten Baum un-

abhängig von der Topologie des Baumes [BW07]. In Zusammenarbeit mit Haase und Paffen-

holz geben wir einen einfachen kombinatorischen Beweis für diesen Satz. Außerdem zeigen

wir, dass die analoge Aussage für das Kimura Dreiparametermodell nicht stimmt [Kub12].

Buczyńska und Wísniewski haben auch gezeigt, dass die mit dem Jukes-Cantor binären

Modell assoziierte Halbgruppe im Grad eins erzeugt ist [BW07]. Eine phylogenetische

Halbgruppe auf einem Graph verallgemeinert das Jukes-Cantor binäre Modell auf einem

Baum [Buc12, BBKM11]. Wir zeigen, dass es für jede natürliche Zahl g einen Graph gibt,

sodass der maximale Grad vom minimalen Erzeugendensystem von der entsprechenden

phylogenetischen Halbgruppe genau 2⌊g2⌋ + 1 ist. Das ist Teil der Arbeit mit Buczyńska,

Buczyński und Micha lek [BBKM11], in der wir auch zeigen, dass g + 1 die bestmögliche

obere Schranke ist.

Das minimale Erzeugendensystem der phylogenetischen Halbgruppe auf einem triva-

lenten Baum wurde von Buczyńska und Wísniewski untersucht [BW07] und der Fall von

trivalenten Graphen mit erster Bettizahl eins wurde von Buczyńska betrachtet [Buc12]. Wir

beschreiben das minimale Erzeugendensystem auf allen Graphen mit erster Bettizahl g ≤ 1

und auf allen trivalenten Graphen mit erster Bettizahl zwei. Außerdem beschreiben wir für

beliebige trivalente Graphen die minimalen Erzeuger vom Grad d ≤ 2.

Basierend auf der Arbeit von Sturmfels und Xu [SX10] hat Manon gezeigt, dass die phy-

logenetischen Halbgruppen torische Degenerationen von Algebren SL2(C)-konformer Blöcke

sind [Man09]. Darüber hinaus hat er ähnliche Verbindungen zwischen dem Rang zweier

Berenstein-Zelevinsky-Dreiecke und Algebren SL3(C)-konformer Blöcke gezeigt [Man12a].

Motiviert von diesen Resultaten stellen wir eine Verbindung zwischen affinen Halbgruppen

von gruppenbasierten Modellen und Halbgruppen von Berenstein-Zelevinsky-Dreiecken her.
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